Naila M. Al Hasan, Huilong Hou, Tieren Gao, Jonathan Counsell, Suchismita Sarker, Sigurd Thienhaus, Edward Walton, Peer Decker, Apurva Mehta, Alfred Ludwig, Ichiro Takeuchi*
{"title":"Combinatorial Exploration and Mapping of Phase Transformation in a Ni–Ti–Co Thin Film Library","authors":"Naila M. Al Hasan, Huilong Hou, Tieren Gao, Jonathan Counsell, Suchismita Sarker, Sigurd Thienhaus, Edward Walton, Peer Decker, Apurva Mehta, Alfred Ludwig, Ichiro Takeuchi*","doi":"10.1021/acscombsci.0c00097","DOIUrl":null,"url":null,"abstract":"<p >Combinatorial synthesis and high-throughput characterization of a Ni–Ti–Co thin film materials library are reported for exploration of reversible martensitic transformation. The library was prepared by magnetron co-sputtering, annealed in vacuum at 500 °C without atmospheric exposure, and evaluated for shape memory behavior as an indicator of transformation. Composition, structure, and transformation behavior of the 177 pads in the library were characterized using high-throughput wavelength dispersive spectroscopy (WDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and four-point probe temperature-dependent resistance (<i>R</i>(<i>T</i>)) measurements. A new, expanded composition space having phase transformation with low thermal hysteresis and Co > 10 at. % is found. Unsupervised machine learning methods of hierarchical clustering were employed to streamline data processing of the large XRD and XPS data sets. Through cluster analysis of XRD data, we identified and mapped the constituent structural phases. Composition–structure–property maps for the ternary system are made to correlate the functional properties to the local microstructure and composition of the Ni–Ti–Co thin film library.</p>","PeriodicalId":14,"journal":{"name":"ACS Combinatorial Science","volume":null,"pages":null},"PeriodicalIF":3.7840,"publicationDate":"2020-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/acscombsci.0c00097","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Combinatorial Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscombsci.0c00097","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 10
Abstract
Combinatorial synthesis and high-throughput characterization of a Ni–Ti–Co thin film materials library are reported for exploration of reversible martensitic transformation. The library was prepared by magnetron co-sputtering, annealed in vacuum at 500 °C without atmospheric exposure, and evaluated for shape memory behavior as an indicator of transformation. Composition, structure, and transformation behavior of the 177 pads in the library were characterized using high-throughput wavelength dispersive spectroscopy (WDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and four-point probe temperature-dependent resistance (R(T)) measurements. A new, expanded composition space having phase transformation with low thermal hysteresis and Co > 10 at. % is found. Unsupervised machine learning methods of hierarchical clustering were employed to streamline data processing of the large XRD and XPS data sets. Through cluster analysis of XRD data, we identified and mapped the constituent structural phases. Composition–structure–property maps for the ternary system are made to correlate the functional properties to the local microstructure and composition of the Ni–Ti–Co thin film library.
期刊介绍:
The Journal of Combinatorial Chemistry has been relaunched as ACS Combinatorial Science under the leadership of new Editor-in-Chief M.G. Finn of The Scripps Research Institute. The journal features an expanded scope and will build upon the legacy of the Journal of Combinatorial Chemistry, a highly cited leader in the field.