{"title":"4-Methyl-5-vinyl thiazole modified Ni-MOF/g-C3N4/CdS composites for efficient photocatalytic hydrogen evolution without precious metal cocatalysts","authors":"Yongzhuo Yu, Wei Li, Huixing Yang, Qiuming Wei, Linlin Hou, Zhiliang Wu, Yangyang Jiang, Chaoyu Lv, Yuxin Huang, Jiyu Tang","doi":"10.1016/j.jcis.2023.07.210","DOIUrl":null,"url":null,"abstract":"<div><p>The construction of heterojunction systems is an effective way to efficiently generate hydrogen by water photolysis. In this work, Ni-MOF (trimesic acid, (BTC)) and g-C<sub>3</sub>N<sub>4</sub> (denoted as CN) were combined, and then Ni-MOF/CN was modified by 4-Methyl-5-vinyl thiazole (denoted as MVTh). Finally, CdS was loaded on the surface of Ni-MOF/CN/MVTh to prepare the photocatalyst Ni-MOF/g-C<sub>3</sub>N<sub>4</sub>/MVTh/CdS (denoted as Ni/CN/M/Cd) with a triangular closed-loop path heterojunction for the first time. As a photocatalyst without precious metal cocatalysts, Ni/CN/M/Cd displayed high H<sub>2</sub> evolution (17.844 mmol·g<sup>−1</sup>·h<sup>−1</sup>) under an optimum CdS loading of 40 wt%. The H<sub>2</sub> evolution rate was approximately 79 times that of Ni-MOF/CN and exceeded those of almost all catalysts based on MOF/CN in the literature. The triangular closed-loop heterojunction formed between Ni-MOF, g-C<sub>3</sub>N<sub>4</sub>, and CdS could realize the directional migration of photocarriers and significantly diminished the transfer resistance of carriers. The Ni<sup>2+</sup> in Ni-MOF provided many cocatalytic sites for H<sub>2</sub> evolution via g-C<sub>3</sub>N<sub>4</sub><span> and CdS. Furthermore, charge carrier separation in Ni-MOF/CN/CdS improved after the innovative addition of MVTh. This study provides a reference for the construction of a closed-loop heterojunction system without precious metal cocatalysts.</span></p></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"651 ","pages":"Pages 221-234"},"PeriodicalIF":9.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979723014686","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2
Abstract
The construction of heterojunction systems is an effective way to efficiently generate hydrogen by water photolysis. In this work, Ni-MOF (trimesic acid, (BTC)) and g-C3N4 (denoted as CN) were combined, and then Ni-MOF/CN was modified by 4-Methyl-5-vinyl thiazole (denoted as MVTh). Finally, CdS was loaded on the surface of Ni-MOF/CN/MVTh to prepare the photocatalyst Ni-MOF/g-C3N4/MVTh/CdS (denoted as Ni/CN/M/Cd) with a triangular closed-loop path heterojunction for the first time. As a photocatalyst without precious metal cocatalysts, Ni/CN/M/Cd displayed high H2 evolution (17.844 mmol·g−1·h−1) under an optimum CdS loading of 40 wt%. The H2 evolution rate was approximately 79 times that of Ni-MOF/CN and exceeded those of almost all catalysts based on MOF/CN in the literature. The triangular closed-loop heterojunction formed between Ni-MOF, g-C3N4, and CdS could realize the directional migration of photocarriers and significantly diminished the transfer resistance of carriers. The Ni2+ in Ni-MOF provided many cocatalytic sites for H2 evolution via g-C3N4 and CdS. Furthermore, charge carrier separation in Ni-MOF/CN/CdS improved after the innovative addition of MVTh. This study provides a reference for the construction of a closed-loop heterojunction system without precious metal cocatalysts.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies