H Maruoka, S Kitaoka, N Tohnai, Y Inaki, T Hatae, T Tanabe
{"title":"The behavior and effect of isopoly (S-carboxymethyl-L-cysteine) derivatives of nucleic acid bases.","authors":"H Maruoka, S Kitaoka, N Tohnai, Y Inaki, T Hatae, T Tanabe","doi":"10.1093/nass/44.1.195","DOIUrl":null,"url":null,"abstract":"<p><p>Isopoly(S-carboxymethyl-L-cysteine) derivatives of nucleic acid bases were prepared as antisense compounds. These compounds in vitro have been found to form stable complex with oligo-DNA or RNA. This paper deals with effect of antisense compounds in vivo. The target in this paper is the sequence of the PSD-95 protein linked with NMDA receptor. Excess passing of calcium ions through the loss of the signal pathway without PSD-95 proteins caused by antisense compound. The cells detailing with L-cysteine derivatives showed the lowest percentage of 19.1%. The data were compared with that of phosphotioate antisense compound.</p>","PeriodicalId":19394,"journal":{"name":"Nucleic acids symposium series","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/nass/44.1.195","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic acids symposium series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nass/44.1.195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Isopoly(S-carboxymethyl-L-cysteine) derivatives of nucleic acid bases were prepared as antisense compounds. These compounds in vitro have been found to form stable complex with oligo-DNA or RNA. This paper deals with effect of antisense compounds in vivo. The target in this paper is the sequence of the PSD-95 protein linked with NMDA receptor. Excess passing of calcium ions through the loss of the signal pathway without PSD-95 proteins caused by antisense compound. The cells detailing with L-cysteine derivatives showed the lowest percentage of 19.1%. The data were compared with that of phosphotioate antisense compound.