H Urata, C Aono, N Ohmoto, Y Shimamoto, Y Kobayashi, M Akagi
{"title":"Non-enzymatic oligomerization of racemic adenosine 5'-phosphorimidazolide on Na(+)-montmorillonite.","authors":"H Urata, C Aono, N Ohmoto, Y Shimamoto, Y Kobayashi, M Akagi","doi":"10.1093/nass/44.1.225","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we have investigated non-enzymatic oligomerization of an activated racemic mononucleotide in the presence of Na(+)-montmorillonite. Oligomers up to the decamer in length were formed by oligomerization reactions of activated D- and L-mononucleotides. Similarly, oligomerization of an activated racemic mononucleotide results in the formation of oligomers up to the octamer. These results suggest that montmorillonite catalysis is quite efficient for the oligomerization of racemic monomers, though it is somewhat less efficient than that of D- and L-monomers.</p>","PeriodicalId":19394,"journal":{"name":"Nucleic acids symposium series","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/nass/44.1.225","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic acids symposium series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nass/44.1.225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this study, we have investigated non-enzymatic oligomerization of an activated racemic mononucleotide in the presence of Na(+)-montmorillonite. Oligomers up to the decamer in length were formed by oligomerization reactions of activated D- and L-mononucleotides. Similarly, oligomerization of an activated racemic mononucleotide results in the formation of oligomers up to the octamer. These results suggest that montmorillonite catalysis is quite efficient for the oligomerization of racemic monomers, though it is somewhat less efficient than that of D- and L-monomers.