{"title":"Single long DNA molecule analysis using fluorescence microscopy.","authors":"N Kaji, M Ueda, Y Baba","doi":"10.1093/nass/44.1.247","DOIUrl":null,"url":null,"abstract":"<p><p>Single long DNA molecule (T4 DNA) in agarose gel was visualized with a fluorescence microscope. We confirmed alternating current electric fields is effective for stretching of single DNA molecule in agarose gel. This stretching phenomenon was observed with wide range of agarose gel concentration from 0.5%(W/V) to 1.5%. From this observation, the presence of agarose gel fiber is essential for this stretching phenomenon. The stretching process of several DNA molecules in gel shows discontinuity, which is never observed in polymer systems. It would be based on topological restriction from gel fibers.</p>","PeriodicalId":19394,"journal":{"name":"Nucleic acids symposium series","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/nass/44.1.247","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic acids symposium series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nass/44.1.247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Single long DNA molecule (T4 DNA) in agarose gel was visualized with a fluorescence microscope. We confirmed alternating current electric fields is effective for stretching of single DNA molecule in agarose gel. This stretching phenomenon was observed with wide range of agarose gel concentration from 0.5%(W/V) to 1.5%. From this observation, the presence of agarose gel fiber is essential for this stretching phenomenon. The stretching process of several DNA molecules in gel shows discontinuity, which is never observed in polymer systems. It would be based on topological restriction from gel fibers.