Planning for subgroup analysis: a case study of treatment-marker interaction in metastatic colorectal cancer

Mithat Gönen Ph.D.
{"title":"Planning for subgroup analysis: a case study of treatment-marker interaction in metastatic colorectal cancer","authors":"Mithat Gönen Ph.D.","doi":"10.1016/S0197-2456(03)00006-0","DOIUrl":null,"url":null,"abstract":"<div><p>Subgroup analysis is a common secondary objective in clinical trials. In oncology where the outcome is often binary (such as tumor response) or time-to-event (such as survival), subgroup analysis can be formulated using an interaction term in logistic or proportional hazards regression models. We focus on a case study of planning a randomized trial in metastatic colorectal cancer possibly involving a treatment-marker interaction. We present a method that can be used to compute the power of interaction tests for a given sample size or to compute the necessary sample sizes for a desired level of power for the planned subgroup analysis. The principle idea is borrowed from analysis of variance and uses appropriate contrasts after a variance-stabilizing transformation. This method is conceptually and operationally simple. It can be applied to binary- or ordinal-marker measurements, and existing sample size tables or software can be used. The accuracy of the approximation is shown to be reasonable by simulation studies.</p></div>","PeriodicalId":72706,"journal":{"name":"Controlled clinical trials","volume":"24 4","pages":"Pages 355-363"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0197-2456(03)00006-0","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Controlled clinical trials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0197245603000060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Subgroup analysis is a common secondary objective in clinical trials. In oncology where the outcome is often binary (such as tumor response) or time-to-event (such as survival), subgroup analysis can be formulated using an interaction term in logistic or proportional hazards regression models. We focus on a case study of planning a randomized trial in metastatic colorectal cancer possibly involving a treatment-marker interaction. We present a method that can be used to compute the power of interaction tests for a given sample size or to compute the necessary sample sizes for a desired level of power for the planned subgroup analysis. The principle idea is borrowed from analysis of variance and uses appropriate contrasts after a variance-stabilizing transformation. This method is conceptually and operationally simple. It can be applied to binary- or ordinal-marker measurements, and existing sample size tables or software can be used. The accuracy of the approximation is shown to be reasonable by simulation studies.

亚组分析计划:转移性结直肠癌治疗-标志物相互作用的案例研究
亚组分析是临床试验中常见的次要目标。在肿瘤学中,结果通常是二元的(如肿瘤反应)或事件时间(如生存),亚组分析可以使用逻辑或比例风险回归模型中的相互作用项来制定。我们的重点是一个病例研究计划在转移性结直肠癌的随机试验可能涉及治疗标志物的相互作用。我们提出了一种方法,该方法可用于计算给定样本量的相互作用测试的功率,或计算计划子群分析所需功率水平的必要样本量。该方法借鉴方差分析的基本思想,经过方差稳定变换后,采用适当的对比。这种方法在概念上和操作上都很简单。它可以应用于二进制或序数标记测量,现有的样本大小表或软件可以使用。仿真研究表明,该近似的精度是合理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信