Statistical approach to DNA chip analysis.

N M Svrakic, O Nesic, M R K Dasu, D Herndon, J R Perez-Polo
{"title":"Statistical approach to DNA chip analysis.","authors":"N M Svrakic,&nbsp;O Nesic,&nbsp;M R K Dasu,&nbsp;D Herndon,&nbsp;J R Perez-Polo","doi":"10.1210/rp.58.1.75","DOIUrl":null,"url":null,"abstract":"<p><p>Statistical methods for analyzing data from DNA microarray experiments are reviewed. Specifically, we discuss common experimental setups, methods for data reduction and clustering, and analysis of time-course experiments. While early microarray studies focused mainly on the basic methodological and technical aspects of DNA arrays, emphasis has shifted to biological, medical, and clinical applications. We mention several of these and present results from our recent research as illustrative examples. New developments in this ever-growing field are outlined.</p>","PeriodicalId":21099,"journal":{"name":"Recent progress in hormone research","volume":"58 ","pages":"75-93"},"PeriodicalIF":0.0000,"publicationDate":"2003-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent progress in hormone research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1210/rp.58.1.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Statistical methods for analyzing data from DNA microarray experiments are reviewed. Specifically, we discuss common experimental setups, methods for data reduction and clustering, and analysis of time-course experiments. While early microarray studies focused mainly on the basic methodological and technical aspects of DNA arrays, emphasis has shifted to biological, medical, and clinical applications. We mention several of these and present results from our recent research as illustrative examples. New developments in this ever-growing field are outlined.

DNA芯片分析的统计学方法。
综述了DNA微阵列实验数据分析的统计方法。具体来说,我们讨论了常见的实验设置,数据约简和聚类的方法,以及时间过程实验的分析。虽然早期的微阵列研究主要集中在DNA阵列的基本方法和技术方面,但重点已经转移到生物学、医学和临床应用上。我们提到了其中的几个,并提出了我们最近的研究结果作为说明性的例子。概述了这一不断发展的领域的新发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信