Ning Wei , Xudong Zheng , Qiao Li , Chenxia Gong , Hongxiang Ou , Zhongyu Li
{"title":"Construction of lanthanum modified MOFs graphene oxide composite membrane for high selective phosphorus recovery and water purification","authors":"Ning Wei , Xudong Zheng , Qiao Li , Chenxia Gong , Hongxiang Ou , Zhongyu Li","doi":"10.1016/j.jcis.2020.01.031","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Metal organic framework materials (MOFs) are kinds of </span>hybrid materials with intra-molecular pores formed by self-assembly of organic ligands and </span>metal ions through coordination bonds. In the paper, a type of MOFs named as [Zn(μ-L)(μ-1,3-dpp)](mof-1), using Zn</span><sup>2+</sup><span> as metal ions, 4,4′-oxybis(benzoic acid) and 1,3-di(4-pyridyl)propane as organic ligands was synthesized. The rare earth element<span><span> lanthanum<span><span>, which has specific adsorption for phosphorus, is intercalated into mof-1 by the impregnation method in order to remove phosphorus-containing wastewater. In order to optimize the nano-sized La-mof-1 materials to facilitate separation, we prepared a membrane by blending MOFs materials with graphene oxide (GO) by pressure application. The addition of GO not only facilitates the separation of materials, but also has excellent removal ability for </span>water purification. After a series of structural characterization, the adsorption </span></span>properties of materials<span> were tested. The experimental results showed that the total phosphorus in the water can get to the maximum adsorption capacity when pH = 4.0. It can be viewed in thermodynamic studies that increasing the temperature favors the adsorption reaction. Increasing the temperature to the 318 K, the equilibrium adsorption capacity of the membrane to total phosphorus in the water reached 139.51 mg/g. The adsorption removal rate of total phosphorus can reach 100% when its concentration is lower than 100 mg/L. This highlights the advantages of intercalating lanthanum into MOFs. The penetration curve was drawn by dynamic adsorption experiments to understand the mass transfer mechanism of La-mof-1GO membrane. Since GO also has a large specific surface area, it is another excellent adsorption material. Experimental data showed that compared with the original water sample, the removal rate of COD in the water reached 73.9%.</span></span></span></p></div>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jcis.2020.01.031","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979720300357","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 40
Abstract
Metal organic framework materials (MOFs) are kinds of hybrid materials with intra-molecular pores formed by self-assembly of organic ligands and metal ions through coordination bonds. In the paper, a type of MOFs named as [Zn(μ-L)(μ-1,3-dpp)](mof-1), using Zn2+ as metal ions, 4,4′-oxybis(benzoic acid) and 1,3-di(4-pyridyl)propane as organic ligands was synthesized. The rare earth element lanthanum, which has specific adsorption for phosphorus, is intercalated into mof-1 by the impregnation method in order to remove phosphorus-containing wastewater. In order to optimize the nano-sized La-mof-1 materials to facilitate separation, we prepared a membrane by blending MOFs materials with graphene oxide (GO) by pressure application. The addition of GO not only facilitates the separation of materials, but also has excellent removal ability for water purification. After a series of structural characterization, the adsorption properties of materials were tested. The experimental results showed that the total phosphorus in the water can get to the maximum adsorption capacity when pH = 4.0. It can be viewed in thermodynamic studies that increasing the temperature favors the adsorption reaction. Increasing the temperature to the 318 K, the equilibrium adsorption capacity of the membrane to total phosphorus in the water reached 139.51 mg/g. The adsorption removal rate of total phosphorus can reach 100% when its concentration is lower than 100 mg/L. This highlights the advantages of intercalating lanthanum into MOFs. The penetration curve was drawn by dynamic adsorption experiments to understand the mass transfer mechanism of La-mof-1GO membrane. Since GO also has a large specific surface area, it is another excellent adsorption material. Experimental data showed that compared with the original water sample, the removal rate of COD in the water reached 73.9%.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.