{"title":"Mechanical exfoliation of large area 2D materials from vdW crystals","authors":"Fang Liu","doi":"10.1016/j.progsurf.2021.100626","DOIUrl":null,"url":null,"abstract":"<div><p>Monolayer two-dimensional (2D) materials, such as graphene and transition metal dichalcogenides<span><span> (TMDCs), provide a versatile platform for exploring novel physical phenomena at the 2D limit, and show great promise for next-generation electronic, optoelectronic, and </span>quantum devices<span><span>. To overcome the weak van der Waals interaction in the bulk layered crystal and achieve high quality single-crystal monolayers is a crucial task in top-down mechanical exfoliation. Tape exfoliation has long been the dominant approach to obtain single-crystal monolayers with high quality. More recently, there has been a fast development of using metals as an intermediate to enhance monolayer area and exfoliation yield. This review will provide a survey of mechanical exfoliation strategies of tape and metal-assisted exfoliations, particularly for the most popular graphene and TMDC materials. The interfacial interaction and lateral strain between monolayer and other materials such as oxides and metals play a crucial role in monolayer </span>selectivity and yield. The challenges and opportunities will be highlighted for future development of exfoliating procedures to achieve large-area and high-quality 2D material monolayers and artificial stacks.</span></span></p></div>","PeriodicalId":416,"journal":{"name":"Progress in Surface Science","volume":"96 2","pages":"Article 100626"},"PeriodicalIF":8.7000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsurf.2021.100626","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Surface Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079681621000149","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 34
Abstract
Monolayer two-dimensional (2D) materials, such as graphene and transition metal dichalcogenides (TMDCs), provide a versatile platform for exploring novel physical phenomena at the 2D limit, and show great promise for next-generation electronic, optoelectronic, and quantum devices. To overcome the weak van der Waals interaction in the bulk layered crystal and achieve high quality single-crystal monolayers is a crucial task in top-down mechanical exfoliation. Tape exfoliation has long been the dominant approach to obtain single-crystal monolayers with high quality. More recently, there has been a fast development of using metals as an intermediate to enhance monolayer area and exfoliation yield. This review will provide a survey of mechanical exfoliation strategies of tape and metal-assisted exfoliations, particularly for the most popular graphene and TMDC materials. The interfacial interaction and lateral strain between monolayer and other materials such as oxides and metals play a crucial role in monolayer selectivity and yield. The challenges and opportunities will be highlighted for future development of exfoliating procedures to achieve large-area and high-quality 2D material monolayers and artificial stacks.
期刊介绍:
Progress in Surface Science publishes progress reports and review articles by invited authors of international stature. The papers are aimed at surface scientists and cover various aspects of surface science. Papers in the new section Progress Highlights, are more concise and general at the same time, and are aimed at all scientists. Because of the transdisciplinary nature of surface science, topics are chosen for their timeliness from across the wide spectrum of scientific and engineering subjects. The journal strives to promote the exchange of ideas between surface scientists in the various areas. Authors are encouraged to write articles that are of relevance and interest to both established surface scientists and newcomers in the field.