Comparison of current-driven and conductance-driven neocortical model neurons with Hodgkin-Huxley voltage-gated channels.

P H Tiesinga, J V José, T J Sejnowski
{"title":"Comparison of current-driven and conductance-driven neocortical model neurons with Hodgkin-Huxley voltage-gated channels.","authors":"P H Tiesinga,&nbsp;J V José,&nbsp;T J Sejnowski","doi":"10.1103/physreve.62.8413","DOIUrl":null,"url":null,"abstract":"<p><p>Intrinsic noise and random synaptic inputs generate a fluctuating current across neuron membranes. We determine the statistics of the output spike train of a biophysical model neuron as a function of the mean and variance of the fluctuating current, when the current is white noise, or when it derives from Poisson trains of excitatory and inhibitory postsynaptic conductances. In the first case, the firing rate increases with increasing variance of the current, whereas in the latter case it decreases. In contrast, the firing rate is independent of variance (for constant mean) in the commonly used random walk, and perfect integrate-and-fire models for spike generation. The model neuron can be in the current-dominated state, representative of neurons in the in vitro slice preparation, or in the fluctuation-dominated state, representative of in vivo neurons. We discuss the functional relevance of these states to cortical information processing.</p>","PeriodicalId":20079,"journal":{"name":"Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics","volume":"62 6 Pt B","pages":"8413-9"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1103/physreve.62.8413","citationCount":"116","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physreve.62.8413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 116

Abstract

Intrinsic noise and random synaptic inputs generate a fluctuating current across neuron membranes. We determine the statistics of the output spike train of a biophysical model neuron as a function of the mean and variance of the fluctuating current, when the current is white noise, or when it derives from Poisson trains of excitatory and inhibitory postsynaptic conductances. In the first case, the firing rate increases with increasing variance of the current, whereas in the latter case it decreases. In contrast, the firing rate is independent of variance (for constant mean) in the commonly used random walk, and perfect integrate-and-fire models for spike generation. The model neuron can be in the current-dominated state, representative of neurons in the in vitro slice preparation, or in the fluctuation-dominated state, representative of in vivo neurons. We discuss the functional relevance of these states to cortical information processing.

具有霍奇金-赫胥黎电压门控通道的电流驱动和电导驱动新皮层模型神经元的比较。
固有噪声和随机的突触输入在神经元膜上产生波动电流。当电流为白噪声时,或者当电流来自兴奋性和抑制性突触后电导的泊松序列时,我们确定了生物物理模型神经元输出尖峰序列的统计量作为波动电流的均值和方差的函数。在第一种情况下,放电速率随着电流变化的增加而增加,而在后一种情况下,放电速率则降低。相比之下,在常用的随机漫步中,发射率独立于方差(对于常数平均值),并且完美的积分-发射模型用于spike生成。模型神经元可以处于电流主导状态,代表体外切片制备中的神经元,也可以处于波动主导状态,代表体内神经元。我们讨论了这些状态与皮质信息处理的功能相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信