Optimal pruning in neural networks.

D M Barbato, O Kinouchi
{"title":"Optimal pruning in neural networks.","authors":"D M Barbato,&nbsp;O Kinouchi","doi":"10.1103/physreve.62.8387","DOIUrl":null,"url":null,"abstract":"<p><p>We study pruning strategies in simple perceptrons subjected to supervised learning. Our analytical results, obtained through the statistical mechanics approach to learning theory, are independent of the learning algorithm used in the training process. We calculate the post-training distribution P(J) of synaptic weights, which depends only on the overlap rho(0) achieved by the learning algorithm before pruning and the fraction kappa of relevant weights in the teacher network. From this distribution, we calculate the optimal pruning strategy for deleting small weights. The optimal pruning threshold grows from zero as straight theta(opt)(rho(0), kappa) approximately [rho(0)-rho(c)(kappa)](1/2) above some critical value rho(c)(kappa). Thus, the elimination of weak synapses enhances the network performance only after a critical learning period. Possible implications for biological pruning phenomena are discussed.</p>","PeriodicalId":20079,"journal":{"name":"Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics","volume":"62 6 Pt B","pages":"8387-94"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1103/physreve.62.8387","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physreve.62.8387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We study pruning strategies in simple perceptrons subjected to supervised learning. Our analytical results, obtained through the statistical mechanics approach to learning theory, are independent of the learning algorithm used in the training process. We calculate the post-training distribution P(J) of synaptic weights, which depends only on the overlap rho(0) achieved by the learning algorithm before pruning and the fraction kappa of relevant weights in the teacher network. From this distribution, we calculate the optimal pruning strategy for deleting small weights. The optimal pruning threshold grows from zero as straight theta(opt)(rho(0), kappa) approximately [rho(0)-rho(c)(kappa)](1/2) above some critical value rho(c)(kappa). Thus, the elimination of weak synapses enhances the network performance only after a critical learning period. Possible implications for biological pruning phenomena are discussed.

神经网络中的最优修剪。
我们研究受监督学习的简单感知器的修剪策略。我们的分析结果是通过学习理论的统计力学方法获得的,与训练过程中使用的学习算法无关。我们计算突触权值的训练后分布P(J),它仅取决于学习算法在修剪前获得的重叠rho(0)和教师网络中相关权值的分数kappa。根据这个分布,我们计算了删除小权重的最优修剪策略。最佳剪枝阈值从零开始增长,直线θ (opt)(rho(0), kappa)近似于[rho(0)-rho(c)(kappa)](1/2)高于某个临界值rho(c)(kappa)。因此,只有在一个关键的学习期之后,消除弱突触才能提高网络的性能。讨论了可能对生物修剪现象的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信