Local (in time) maximal lyapunov exponents of fragmenting drops

Balenzuela, Bonasera, Dorso
{"title":"Local (in time) maximal lyapunov exponents of fragmenting drops","authors":"Balenzuela,&nbsp;Bonasera,&nbsp;Dorso","doi":"10.1103/physreve.62.7848","DOIUrl":null,"url":null,"abstract":"<p><p>We analyze the dynamics of fragment formation in simulations of exploding three-dimensional Lennard-Jones hot drops, using the maximum local (in time) Lyapunov exponent (MLLE). The dependence of this exponent on the excitation energy of the system displays two different behaviors according to the stage of the dynamical evolution: one related to the highly collisional stage of the evolution, at early times, and the other related to the asymptotic state. We show that in the early, highly collisional, stage of the evolution the MLLE is an increasing function of the energy, as in an infinite-size system. On the other hand, at long times, the MLLE displays a maximum, depending mainly on the size of the resulting biggest fragment. We compare the time scale at which the MLLE's reach their asymptotic values with the characteristic time of fragment formation in phase space. Moreover, upon calculation of the maximum Lyapunov exponent (MLE) of the resulting fragments, we show that their dependence with the mass can be traced to bulk effects plus surface corrections. Using this information the asymptotic behavior of the MLLE can be understood and the fluctuations of the MLE of the whole system can be easily calculated. These fluctuations display a sudden increase for that excitation energy which produces a power-law-like asymptotic distribution of fragments.</p>","PeriodicalId":20079,"journal":{"name":"Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics","volume":"62 6 Pt A","pages":"7848-56"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1103/physreve.62.7848","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physreve.62.7848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We analyze the dynamics of fragment formation in simulations of exploding three-dimensional Lennard-Jones hot drops, using the maximum local (in time) Lyapunov exponent (MLLE). The dependence of this exponent on the excitation energy of the system displays two different behaviors according to the stage of the dynamical evolution: one related to the highly collisional stage of the evolution, at early times, and the other related to the asymptotic state. We show that in the early, highly collisional, stage of the evolution the MLLE is an increasing function of the energy, as in an infinite-size system. On the other hand, at long times, the MLLE displays a maximum, depending mainly on the size of the resulting biggest fragment. We compare the time scale at which the MLLE's reach their asymptotic values with the characteristic time of fragment formation in phase space. Moreover, upon calculation of the maximum Lyapunov exponent (MLE) of the resulting fragments, we show that their dependence with the mass can be traced to bulk effects plus surface corrections. Using this information the asymptotic behavior of the MLLE can be understood and the fluctuations of the MLE of the whole system can be easily calculated. These fluctuations display a sudden increase for that excitation energy which produces a power-law-like asymptotic distribution of fragments.

碎片滴的局部(在时间上)极大lyapunov指数
利用最大局部(时间)李雅普诺夫指数(MLLE)分析了三维Lennard-Jones热滴爆炸模拟中碎片形成的动力学。该指数对系统激励能的依赖关系根据动力学演化的阶段表现出两种不同的行为:一种与演化的早期高度碰撞阶段有关,另一种与渐近状态有关。我们表明,在进化的早期,高度碰撞的阶段,mle是能量的增加函数,就像在无限大小的系统中一样。另一方面,在很长时间内,MLLE显示最大值,这主要取决于所产生的最大片段的大小。我们将mle达到渐近值的时间尺度与相空间碎片形成的特征时间进行了比较。此外,通过计算所得碎片的最大李雅普诺夫指数(MLE),我们表明它们与质量的依赖关系可以追溯到体积效应加上表面修正。利用这些信息可以理解最大似然估计的渐近行为,并且可以很容易地计算出整个系统最大似然估计的波动。这些波动显示出激发能的突然增加,从而产生类似幂律的碎片渐近分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信