Fourier grid hamiltonian method and lagrange-mesh calculations

Semay
{"title":"Fourier grid hamiltonian method and lagrange-mesh calculations","authors":"Semay","doi":"10.1103/physreve.62.8777","DOIUrl":null,"url":null,"abstract":"<p><p>Bound state eigenvalues and eigenfunctions of a Schrodinger equation or a spinless Salpeter equation can be simply and accurately computed by the Fourier grid Hamiltonian (FGH) method. It requires only the evaluation of the potential at equally spaced grid points, and yields the eigenfunctions at the same grid points. The Lagrange-mesh (LM) method is another simple procedure to solve a Schrodinger equation on a mesh. It is shown that the FGH method is a special case of a LM calculation in which the kinetic energy operator is treated by a discrete Fourier transformation. This gives a firm basis for the FGH method and makes possible the evaluation of the eigenfunctions obtained with this method at any arbitrary values.</p>","PeriodicalId":20079,"journal":{"name":"Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics","volume":"62 6 Pt B","pages":"8777-81"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1103/physreve.62.8777","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physreve.62.8777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Bound state eigenvalues and eigenfunctions of a Schrodinger equation or a spinless Salpeter equation can be simply and accurately computed by the Fourier grid Hamiltonian (FGH) method. It requires only the evaluation of the potential at equally spaced grid points, and yields the eigenfunctions at the same grid points. The Lagrange-mesh (LM) method is another simple procedure to solve a Schrodinger equation on a mesh. It is shown that the FGH method is a special case of a LM calculation in which the kinetic energy operator is treated by a discrete Fourier transformation. This gives a firm basis for the FGH method and makes possible the evaluation of the eigenfunctions obtained with this method at any arbitrary values.

傅里叶网格哈密顿方法和拉格朗日网格计算
用傅里叶网格哈密顿(FGH)方法可以简单、准确地计算薛定谔方程和无自旋Salpeter方程的束缚态特征值和特征函数。它只需要在等间距的网格点上求势,并得到相同网格点上的特征函数。拉格朗日网格法是在网格上求解薛定谔方程的另一种简单方法。结果表明,FGH方法是用离散傅里叶变换处理动能算子的LM计算的一种特殊情况。这为FGH方法提供了坚实的基础,并使用该方法在任意值处得到的特征函数的求值成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信