D J Ager, I G Fotheringham, T Li, D P Pantaleone, R F Senkpeil
{"title":"The large scale synthesis of \"unnatural\" amino acids.","authors":"D J Ager, I G Fotheringham, T Li, D P Pantaleone, R F Senkpeil","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The introduction of a stereogenic centre to produce an \"unnatural\" amino acid can be accomplished in a variety of ways ranging from asymmetric hydrogenation to biotransformations based on transaminase enzymes. Our transaminase approach can be used to access a wide variety of L- and D-amino acids from an alpha-keto acid substrate. It is run as a whole cell biotransformation and uses coupled enzyme systems. In addition, formation of amino acids with small side chains, such as 2-aminobutyrate, can cause significant isolation problems due to the presence of small amounts of other amino acids, such as alanine. The improvements we have made to the approach are illustrated with 2-aminobutyrate as the example. Aspartic acid is used as the amino donor and gives rise to the formation of pyruvate, a substrate for the transaminase enzymes. We have now developed an alternative approach where lysine is used as the amino donor to allow formation of a cyclic by-product that is removed from the equilibrium.</p>","PeriodicalId":11752,"journal":{"name":"Enantiomer","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enantiomer","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The introduction of a stereogenic centre to produce an "unnatural" amino acid can be accomplished in a variety of ways ranging from asymmetric hydrogenation to biotransformations based on transaminase enzymes. Our transaminase approach can be used to access a wide variety of L- and D-amino acids from an alpha-keto acid substrate. It is run as a whole cell biotransformation and uses coupled enzyme systems. In addition, formation of amino acids with small side chains, such as 2-aminobutyrate, can cause significant isolation problems due to the presence of small amounts of other amino acids, such as alanine. The improvements we have made to the approach are illustrated with 2-aminobutyrate as the example. Aspartic acid is used as the amino donor and gives rise to the formation of pyruvate, a substrate for the transaminase enzymes. We have now developed an alternative approach where lysine is used as the amino donor to allow formation of a cyclic by-product that is removed from the equilibrium.