Hanns-Christian Mahler , Ina Schulz , Waldemar Adam , Günther N Grimm , Chantu R Saha-Möller , Bernd Epe
{"title":"tert-Butoxyl radicals generate mainly 7,8-dihydro-8-oxoguanine in DNA","authors":"Hanns-Christian Mahler , Ina Schulz , Waldemar Adam , Günther N Grimm , Chantu R Saha-Möller , Bernd Epe","doi":"10.1016/S0921-8777(00)00057-4","DOIUrl":null,"url":null,"abstract":"<div><p><span>Like hydroxyl radicals, alkoxyl radicals have been implicated in the generation of cellular oxidative DNA damage under physiological conditions; however, their genotoxic potential has not yet been established. We have analyzed the DNA damage induced by a photochemical source of </span><em>tert-</em>butoxyl radicals, the water soluble peroxy ester [4-(<em>tert</em>-butyldioxycarbonyl)benzyl]triethylammonium chloride (BCBT), using various repair endonucleases as probes. The irradiation (UV<sup>360</sup>) of BCBT in the presence of bacteriophage PM2 DNA was found to generate a DNA damage profile that consisted mostly of base modifications sensitive to the repair endonuclease Fpg protein. Approximately 90% of the modifications were identified as 7,8-dihydro-8-oxoguanine (8-oxoGua) residues by HPLC/ECD analysis. Oxidative pyrimidine modifications (sensitive to endonuclease III), sites of base loss (AP sites) and single-strand breaks were only minor modifications. Experiments with various scavengers and quenchers indicated that the DNA damage by BCBT+UV<sup>360</sup> was caused by <em>tert-</em><span>butoxyl radicals as the ultimate reactive species. The mutagenicity associated with the induced damage was analyzed in the </span><span><em>gpt</em></span> gene of plasmid pSV2<em>gpt</em>, which was exposed to BCBT+UV<sup>360</sup> and subsequently transfected into <em>Escherichia coli</em><span><span>. The results were in agreement with the specific generation of 8-oxoGua. Nearly all point mutations (20 out of 21) were found to be GC→TA </span>transversions known to be characteristic for 8-oxoGua. In conclusion, alkoxyl radicals generated from BCBT+UV</span><sup>360</sup><span><span> induce 8-oxoGua in DNA with a higher selectivity than any other </span>reactive oxygen species analyzed so far.</span></p></div>","PeriodicalId":100935,"journal":{"name":"Mutation Research/DNA Repair","volume":"461 4","pages":"Pages 289-299"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0921-8777(00)00057-4","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research/DNA Repair","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921877700000574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Like hydroxyl radicals, alkoxyl radicals have been implicated in the generation of cellular oxidative DNA damage under physiological conditions; however, their genotoxic potential has not yet been established. We have analyzed the DNA damage induced by a photochemical source of tert-butoxyl radicals, the water soluble peroxy ester [4-(tert-butyldioxycarbonyl)benzyl]triethylammonium chloride (BCBT), using various repair endonucleases as probes. The irradiation (UV360) of BCBT in the presence of bacteriophage PM2 DNA was found to generate a DNA damage profile that consisted mostly of base modifications sensitive to the repair endonuclease Fpg protein. Approximately 90% of the modifications were identified as 7,8-dihydro-8-oxoguanine (8-oxoGua) residues by HPLC/ECD analysis. Oxidative pyrimidine modifications (sensitive to endonuclease III), sites of base loss (AP sites) and single-strand breaks were only minor modifications. Experiments with various scavengers and quenchers indicated that the DNA damage by BCBT+UV360 was caused by tert-butoxyl radicals as the ultimate reactive species. The mutagenicity associated with the induced damage was analyzed in the gpt gene of plasmid pSV2gpt, which was exposed to BCBT+UV360 and subsequently transfected into Escherichia coli. The results were in agreement with the specific generation of 8-oxoGua. Nearly all point mutations (20 out of 21) were found to be GC→TA transversions known to be characteristic for 8-oxoGua. In conclusion, alkoxyl radicals generated from BCBT+UV360 induce 8-oxoGua in DNA with a higher selectivity than any other reactive oxygen species analyzed so far.