Okadaic acid-mediated induction of the c-fos gene in estrogen receptor-negative human breast carcinoma cells utilized, in part, posttranscriptional mechanisms involving adenosine-uridine-rich elements.
L Farhana, M Boyanapalli, S H Tschang, R J Sun, C K Hsu, Y X Zhang, J A Fontana, A K Rishi
{"title":"Okadaic acid-mediated induction of the c-fos gene in estrogen receptor-negative human breast carcinoma cells utilized, in part, posttranscriptional mechanisms involving adenosine-uridine-rich elements.","authors":"L Farhana, M Boyanapalli, S H Tschang, R J Sun, C K Hsu, Y X Zhang, J A Fontana, A K Rishi","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Signal transduction via modulation of phosphorylation after selective inhibition of protein phosphatase (PP) 1 and/or PP2A appears to play a role in okadaic acid (OA)-mediated effects. Treatment of several estrogen receptor-negative human breast carcinoma (HBC) cells with 100 nM OA resulted in induction of c-fos, c-myc, and cyclin-dependent kinase inhibitor p21WAF1/CIP1 genes. Transfections of various luciferase reporter constructs in HBC cells revealed involvement of activator protein-1-dependent as well as -independent pathways in induction of the c-fos gene by OA. MDA-MB-468 HBC cells were stably transfected with plasmids expressing luciferase, chimeric luciferase- c-fos 3' untranslated region (3'UTR), or chimeric luciferase-p21WAF1/CIP 3'UTR mRNAs. Expression of chimeric luciferase-c-fos and luciferase-p21WAF1/CIP1 mRNAs was elevated by OA in several independent sublines. Actinomycin D chase experiments revealed an enhanced rate of decay of luciferase-c-fos mRNA, whereas treatment with OA caused approximately 3.5-fold enhanced stability of the chimeric luciferase-c-fos mRNA only. By transfecting different plasmids containing deletions of c-fos 3'UTR, OA-responsive sequences were mapped to an 86-nucleotide, AU-rich region. UV cross-linking experiments using HBC cell cytosolic proteins showed multiple complexes with the AU-rich region subfragments of c-fos, as well as c-myc and p21WAF1/CIP1 mRNAs. OA enhanced binding of a novel Mr approximately 75,000 protein present in the cytosolic extracts of HBC cells to the AU-rich RNA probes of all of the above three genes. Taken together, OA regulation of HBC cell gene expression involves the activator protein-1 pathway, as well as enhanced binding of a novel Mr approximately 75,000 protein to an AU-rich region of the 3'UTRs of the target genes.</p>","PeriodicalId":9753,"journal":{"name":"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research","volume":"11 10","pages":"541-50"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Signal transduction via modulation of phosphorylation after selective inhibition of protein phosphatase (PP) 1 and/or PP2A appears to play a role in okadaic acid (OA)-mediated effects. Treatment of several estrogen receptor-negative human breast carcinoma (HBC) cells with 100 nM OA resulted in induction of c-fos, c-myc, and cyclin-dependent kinase inhibitor p21WAF1/CIP1 genes. Transfections of various luciferase reporter constructs in HBC cells revealed involvement of activator protein-1-dependent as well as -independent pathways in induction of the c-fos gene by OA. MDA-MB-468 HBC cells were stably transfected with plasmids expressing luciferase, chimeric luciferase- c-fos 3' untranslated region (3'UTR), or chimeric luciferase-p21WAF1/CIP 3'UTR mRNAs. Expression of chimeric luciferase-c-fos and luciferase-p21WAF1/CIP1 mRNAs was elevated by OA in several independent sublines. Actinomycin D chase experiments revealed an enhanced rate of decay of luciferase-c-fos mRNA, whereas treatment with OA caused approximately 3.5-fold enhanced stability of the chimeric luciferase-c-fos mRNA only. By transfecting different plasmids containing deletions of c-fos 3'UTR, OA-responsive sequences were mapped to an 86-nucleotide, AU-rich region. UV cross-linking experiments using HBC cell cytosolic proteins showed multiple complexes with the AU-rich region subfragments of c-fos, as well as c-myc and p21WAF1/CIP1 mRNAs. OA enhanced binding of a novel Mr approximately 75,000 protein present in the cytosolic extracts of HBC cells to the AU-rich RNA probes of all of the above three genes. Taken together, OA regulation of HBC cell gene expression involves the activator protein-1 pathway, as well as enhanced binding of a novel Mr approximately 75,000 protein to an AU-rich region of the 3'UTRs of the target genes.