Dietary cadmium induces histopathological changes despite a sufficient metallothionein level in the liver and kidneys of the bank vole (Clethrionomys glareolus)
Tadeusz Włostowski, Alicja Krasowska, Barbara Laszkiewicz-Tiszczenko
{"title":"Dietary cadmium induces histopathological changes despite a sufficient metallothionein level in the liver and kidneys of the bank vole (Clethrionomys glareolus)","authors":"Tadeusz Włostowski, Alicja Krasowska, Barbara Laszkiewicz-Tiszczenko","doi":"10.1016/S0742-8413(00)00089-X","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of this study was to correlate hepatic and renal cadmium (Cd) accumulation, Cd-binding capacity of metallothionein (MT) and lipid peroxidation with the tissue injury in the male bank voles raised under short (8 h light/16 h dark) and long (16 h light/8 h dark) photoperiods that affect differently Cd accumulation and MT induction in these rodents. The animals were exposed to dietary Cd (0, 40 and 80 μg/g) for 6 weeks. The accumulation of Cd in the liver and kidneys appeared to be dose-dependent in bank voles from the two photoperiod groups; however, the short-photoperiod animals exhibited significantly higher concentrations of Cd in both organs than the long-photoperiod bank voles. Cd-Binding capacity of MT in the liver and kidneys of bank voles from the long photoperiod was sufficiently high to bind and detoxify all Cd ions, while in the animals fed 80 μg Cd/g under the short photoperiod, the concentrations of Cd in both organs exceeded (by about 10 μg/g) the MT capacity. However, similar histopathological changes in the liver (a focal hepatocyte swelling and granuloma) and kidneys (a focal degeneration of proximal tubules) occurred in Cd-80 bank voles from the two photoperiods. Likewise, in either photoperiod group, dietary Cd brought about a similar, dose-dependent decrease in the hepatic and renal lipid peroxidation, which paralleled closely that of the iron (Fe) concentrations. These data indicate that: (1) MT does not protect the liver and kidneys against Cd-induced injury in the bank vole exposed to the higher level of dietary Cd; and (2) lipid peroxidation cannot be responsible for the tissue damage. It is hypothesized that dietary Cd produces histopathological changes indirectly, through depressing the tissue Fe and Fe-dependent oxidative processes.</p></div>","PeriodicalId":10586,"journal":{"name":"Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0742-8413(00)00089-X","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S074284130000089X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
The objective of this study was to correlate hepatic and renal cadmium (Cd) accumulation, Cd-binding capacity of metallothionein (MT) and lipid peroxidation with the tissue injury in the male bank voles raised under short (8 h light/16 h dark) and long (16 h light/8 h dark) photoperiods that affect differently Cd accumulation and MT induction in these rodents. The animals were exposed to dietary Cd (0, 40 and 80 μg/g) for 6 weeks. The accumulation of Cd in the liver and kidneys appeared to be dose-dependent in bank voles from the two photoperiod groups; however, the short-photoperiod animals exhibited significantly higher concentrations of Cd in both organs than the long-photoperiod bank voles. Cd-Binding capacity of MT in the liver and kidneys of bank voles from the long photoperiod was sufficiently high to bind and detoxify all Cd ions, while in the animals fed 80 μg Cd/g under the short photoperiod, the concentrations of Cd in both organs exceeded (by about 10 μg/g) the MT capacity. However, similar histopathological changes in the liver (a focal hepatocyte swelling and granuloma) and kidneys (a focal degeneration of proximal tubules) occurred in Cd-80 bank voles from the two photoperiods. Likewise, in either photoperiod group, dietary Cd brought about a similar, dose-dependent decrease in the hepatic and renal lipid peroxidation, which paralleled closely that of the iron (Fe) concentrations. These data indicate that: (1) MT does not protect the liver and kidneys against Cd-induced injury in the bank vole exposed to the higher level of dietary Cd; and (2) lipid peroxidation cannot be responsible for the tissue damage. It is hypothesized that dietary Cd produces histopathological changes indirectly, through depressing the tissue Fe and Fe-dependent oxidative processes.