{"title":"Heart and lung support interaction--modeling and simulation.","authors":"M Darowski","doi":"10.1163/15685570052062648","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanical support of the lungs used to preserve life or during any kind of surgery may have an adverse effect on the cardiovascular system. Usually, positive pressure in alveoli diminishes lung perfusion, venous return and cardiac output. Positive pressure during the respiratory cycle is transfered into the thoracic space. The aim of this study was to assess how synchronization of the respirator with spontaneous breathing influences the distribution of pressure and ventilation in nonhomogeneous lungs and how it should influence hemodynamics. For this purpose a multicompartmental model of respiratory system mechanics was used in the electrical analog of a respirator-lung circuit, which enabled us to simultaneously simulate ventilatory support and spontaneous breathing. Mechanical properties of the respiratory system were modeled by lumped parameters: resistances and capacitances of constant values, independent of lung volume or inspiratory flow changes. A multicompartmental model of the respiratory system enabled us to simulate lung pathology characterized by non-homogeneity of the mechanical properties of the different parts of the lungs. The results of simulations presented in the paper enable us to conclude that lung volume increase, independent of the respirator-patient breathing synchronization, may be modeled as the increase in pulmonary vascular resistance and alveolar pressure increase, dependent on respirator-patient breathing synchronization, may be averaged by esophageous balloon measurements which show intrathoracic pressure changes.</p>","PeriodicalId":77139,"journal":{"name":"Frontiers of medical and biological engineering : the international journal of the Japan Society of Medical Electronics and Biological Engineering","volume":"10 3","pages":"157-65"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1163/15685570052062648","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of medical and biological engineering : the international journal of the Japan Society of Medical Electronics and Biological Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1163/15685570052062648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Mechanical support of the lungs used to preserve life or during any kind of surgery may have an adverse effect on the cardiovascular system. Usually, positive pressure in alveoli diminishes lung perfusion, venous return and cardiac output. Positive pressure during the respiratory cycle is transfered into the thoracic space. The aim of this study was to assess how synchronization of the respirator with spontaneous breathing influences the distribution of pressure and ventilation in nonhomogeneous lungs and how it should influence hemodynamics. For this purpose a multicompartmental model of respiratory system mechanics was used in the electrical analog of a respirator-lung circuit, which enabled us to simultaneously simulate ventilatory support and spontaneous breathing. Mechanical properties of the respiratory system were modeled by lumped parameters: resistances and capacitances of constant values, independent of lung volume or inspiratory flow changes. A multicompartmental model of the respiratory system enabled us to simulate lung pathology characterized by non-homogeneity of the mechanical properties of the different parts of the lungs. The results of simulations presented in the paper enable us to conclude that lung volume increase, independent of the respirator-patient breathing synchronization, may be modeled as the increase in pulmonary vascular resistance and alveolar pressure increase, dependent on respirator-patient breathing synchronization, may be averaged by esophageous balloon measurements which show intrathoracic pressure changes.