{"title":"Assuming peripheral elimination: its impact on the estimation of pharmacokinetic parameters of muscle relaxants.","authors":"J Laurin, F Nekka, F Donati, F Varin","doi":"10.1023/a:1023286329945","DOIUrl":null,"url":null,"abstract":"<p><p>For anesthetic drugs undergoing nonorgan-based elimination, there is a definite trend towards using pharmacokinetic (PK) models in which elimination can occur from both central (k10) and peripheral compartments (k20). As the latter cannot be assessed directly, assumptions have to be made regarding its value. The primary purpose of this paper is to evaluate the impact of assuming various degrees of peripheral elimination on the estimation of PK parameters. For doing so, an explanatory model is presented where previously published data from our laboratory on three muscle relaxants, i.e., atracurium, doxacurium, and mivacurium, are used for simulations. The mathematical aspects for this explanatory model as well as for two specific applications are detailed. Our simulations show that muscle relaxants having a short elimination half-life are more affected by the presence of peripheral elimination as their distribution phase occupies the major proportion of their total area under the curve. Changes in the exit site dependent PK parameters (Vdss) are also mostly significant when k20 is smaller than k10. Although the physiological processes that determine drug distribution and those affecting peripheral elimination are independent, the two are mathematically tied together in the two-compartment model with both central and peripheral elimination. It follows that, as greater importance is given to k20, the rate of transfer from the central compartment (k12) increases. However, as a result of a proportional increase in the volume of the peripheral compartment, peripheral concentrations remain unchanged whether or not peripheral elimination is assumed. These findings point out the limitations of compartmental analysis when peripheral elimination cannot be measured directly.</p>","PeriodicalId":16765,"journal":{"name":"Journal of Pharmacokinetics and Biopharmaceutics","volume":"27 5","pages":"491-512"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1023/a:1023286329945","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Biopharmaceutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1023/a:1023286329945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
For anesthetic drugs undergoing nonorgan-based elimination, there is a definite trend towards using pharmacokinetic (PK) models in which elimination can occur from both central (k10) and peripheral compartments (k20). As the latter cannot be assessed directly, assumptions have to be made regarding its value. The primary purpose of this paper is to evaluate the impact of assuming various degrees of peripheral elimination on the estimation of PK parameters. For doing so, an explanatory model is presented where previously published data from our laboratory on three muscle relaxants, i.e., atracurium, doxacurium, and mivacurium, are used for simulations. The mathematical aspects for this explanatory model as well as for two specific applications are detailed. Our simulations show that muscle relaxants having a short elimination half-life are more affected by the presence of peripheral elimination as their distribution phase occupies the major proportion of their total area under the curve. Changes in the exit site dependent PK parameters (Vdss) are also mostly significant when k20 is smaller than k10. Although the physiological processes that determine drug distribution and those affecting peripheral elimination are independent, the two are mathematically tied together in the two-compartment model with both central and peripheral elimination. It follows that, as greater importance is given to k20, the rate of transfer from the central compartment (k12) increases. However, as a result of a proportional increase in the volume of the peripheral compartment, peripheral concentrations remain unchanged whether or not peripheral elimination is assumed. These findings point out the limitations of compartmental analysis when peripheral elimination cannot be measured directly.