{"title":"The effects of self-movement, observation, and imagination on mu rhythms and readiness potentials (RP's): toward a brain-computer interface (BCI).","authors":"J A Pineda, B Z Allison, A Vankov","doi":"10.1109/86.847822","DOIUrl":null,"url":null,"abstract":"<p><p>Current movement-based brain-computer interfaces (BCI's) utilize spontaneous electroencephalogram (EEG) rhythms associated with movement, such as the mu rhythm, or responses time-locked to movements that are averaged across multiple trials, such as the readiness potential (RP), as control signals. In one study, we report that the mu rhythm is not only modulated by the expression of self-generated movement but also by the observation and imagination of movement. In another study, we show that simultaneous self-generated multiple limb movements exhibit properties distinct from those of single limb movements. Identification and classification of these signals with pattern recognition techniques provides the basis for the development of a practical BCI.</p>","PeriodicalId":79442,"journal":{"name":"IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society","volume":"8 2","pages":"219-22"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/86.847822","citationCount":"233","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/86.847822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 233
Abstract
Current movement-based brain-computer interfaces (BCI's) utilize spontaneous electroencephalogram (EEG) rhythms associated with movement, such as the mu rhythm, or responses time-locked to movements that are averaged across multiple trials, such as the readiness potential (RP), as control signals. In one study, we report that the mu rhythm is not only modulated by the expression of self-generated movement but also by the observation and imagination of movement. In another study, we show that simultaneous self-generated multiple limb movements exhibit properties distinct from those of single limb movements. Identification and classification of these signals with pattern recognition techniques provides the basis for the development of a practical BCI.