Current trends in Graz Brain-Computer Interface (BCI) research.

G Pfurtscheller, C Neuper, C Guger, W Harkam, H Ramoser, A Schlögl, B Obermaier, M Pregenzer
{"title":"Current trends in Graz Brain-Computer Interface (BCI) research.","authors":"G Pfurtscheller,&nbsp;C Neuper,&nbsp;C Guger,&nbsp;W Harkam,&nbsp;H Ramoser,&nbsp;A Schlögl,&nbsp;B Obermaier,&nbsp;M Pregenzer","doi":"10.1109/86.847821","DOIUrl":null,"url":null,"abstract":"<p><p>This paper describes a research approach to develop a brain-computer interface (BCI) based on recognition of subject-specific EEG patterns. EEG signals recorded from sensorimotor areas during mental imagination of specific movements are classified on-line and used e.g. for cursor control. In a number of on-line experiments, various methods for EEG feature extraction and classification have been evaluated.</p>","PeriodicalId":79442,"journal":{"name":"IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society","volume":"8 2","pages":"216-9"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/86.847821","citationCount":"561","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/86.847821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 561

Abstract

This paper describes a research approach to develop a brain-computer interface (BCI) based on recognition of subject-specific EEG patterns. EEG signals recorded from sensorimotor areas during mental imagination of specific movements are classified on-line and used e.g. for cursor control. In a number of on-line experiments, various methods for EEG feature extraction and classification have been evaluated.

格拉茨脑机接口(BCI)研究的最新趋势。
本文介绍了一种基于被试脑电模式识别的脑机接口(BCI)研究方法。在特定运动的心理想象过程中,从感觉运动区域记录的脑电图信号被在线分类,并用于光标控制等。在大量的在线实验中,对各种脑电信号特征提取和分类方法进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信