A virtual reality testbed for brain-computer interface research.

J D Bayliss, D H Ballard
{"title":"A virtual reality testbed for brain-computer interface research.","authors":"J D Bayliss,&nbsp;D H Ballard","doi":"10.1109/86.847811","DOIUrl":null,"url":null,"abstract":"<p><p>Virtual reality promises to extend the realm of possible brain-computer interface (BCI) prototypes. Most of the work using electroencephalograph (EEG) signals in VR has focussed on brain-body actuated control, where biological signals from the body as well as the brain are used. We show that when subjects are allowed to move and act normally in an immersive virtual environment, cognitive evoked potential signals can still be obtained and used reliably. A single trial accuracy average of 85% for recognizing the differences between evoked potentials at red and yellow stop lights will be presented and future directions discussed.</p>","PeriodicalId":79442,"journal":{"name":"IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society","volume":"8 2","pages":"188-90"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/86.847811","citationCount":"181","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/86.847811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 181

Abstract

Virtual reality promises to extend the realm of possible brain-computer interface (BCI) prototypes. Most of the work using electroencephalograph (EEG) signals in VR has focussed on brain-body actuated control, where biological signals from the body as well as the brain are used. We show that when subjects are allowed to move and act normally in an immersive virtual environment, cognitive evoked potential signals can still be obtained and used reliably. A single trial accuracy average of 85% for recognizing the differences between evoked potentials at red and yellow stop lights will be presented and future directions discussed.

脑机接口研究的虚拟现实试验台。
虚拟现实有望扩展可能的脑机接口(BCI)原型领域。在VR中使用脑电图(EEG)信号的大部分工作都集中在脑-体驱动控制上,其中使用来自身体和大脑的生物信号。我们表明,当受试者被允许在沉浸式虚拟环境中正常移动和行动时,认知诱发电位信号仍然可以获得并可靠地使用。在识别红色和黄色停车灯诱发电位差异的单次试验准确率平均为85%,并讨论了未来的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信