MD Martin H. Steinberg (Associate Chief of Staff for Research and Professor of Medicine)
{"title":"6 Pathophysiology of sickle cell disease","authors":"MD Martin H. Steinberg (Associate Chief of Staff for Research and Professor of Medicine)","doi":"10.1016/S0950-3536(98)80074-7","DOIUrl":null,"url":null,"abstract":"<div><p>Sickle cell disease is caused by a mutation in the β-globin chain of the haemoglobin molecule. Sickle haemoglobin, the result of this mutation, has the singular property of polymerizing when deoxygenated. Exactly how normal tissue perfusion is interrupted by abnormal sickle cells is complex and poorly understood. Despite genetic identity at the site of the sickle haemoglobin mutation, all patients with sickle cell anaemia are not affected equally by this disease. Secondary genetic determinants and acquired erythrocyte and vascular damage are likely to be central components of the pathophysiology of sickle cell anaemia.</p></div>","PeriodicalId":77029,"journal":{"name":"Bailliere's clinical haematology","volume":"11 1","pages":"Pages 163-184"},"PeriodicalIF":0.0000,"publicationDate":"1998-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0950-3536(98)80074-7","citationCount":"56","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bailliere's clinical haematology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950353698800747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56
Abstract
Sickle cell disease is caused by a mutation in the β-globin chain of the haemoglobin molecule. Sickle haemoglobin, the result of this mutation, has the singular property of polymerizing when deoxygenated. Exactly how normal tissue perfusion is interrupted by abnormal sickle cells is complex and poorly understood. Despite genetic identity at the site of the sickle haemoglobin mutation, all patients with sickle cell anaemia are not affected equally by this disease. Secondary genetic determinants and acquired erythrocyte and vascular damage are likely to be central components of the pathophysiology of sickle cell anaemia.