{"title":"Role of activins in the male reproductive tract.","authors":"G P Risbridger, B Cancilla","doi":"10.1530/ror.0.0050099","DOIUrl":null,"url":null,"abstract":"<p><p>The search for gonadal proteins that regulate pituitary FSH led to the isolation of inhibins and activins. As members of the transforming growth factor beta (TGFbeta) superfamily of growth and differentiation factors, these proteins have been shown subsequently to affect a range of tissues and systems beyond their role in reproduction. Studies on the expression and synthesis of activins in the male reproductive tract have localized these proteins in the testis, epididymis and prostate. In general, activins regulate cell proliferation and, consequently, the expression and localization of activin subunit mRNAs and proteins within these organs must be discrete. Activin ligand bioactivity is dependent on the presence of the appropriate receptors and signalling systems, but activin ligand formation or access to receptors is regulated by the formation of inhibins or by activin-binding proteins such as follistatin. This review examines the evidence that the capacity to synthesize activins and to regulate activin bioactivity resides in the cells of the male reproductive tract. It is concluded that activins exert their effects through local (autocrine or paracrine) mechanisms, rather than through endocrine systems. The interplay between the inhibins or follistatins provides a degree of regulation of activin bioactivity before ligand signalling events. The challenge for the future is to determine whether there is any difference between the action of individual activin ligands or whether these proteins are functionally redundant, indicating that compensatory mechanisms are essential for male reproductive tract function.</p>","PeriodicalId":79531,"journal":{"name":"Reviews of reproduction","volume":"5 2","pages":"99-104"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1530/ror.0.0050099","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of reproduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1530/ror.0.0050099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
The search for gonadal proteins that regulate pituitary FSH led to the isolation of inhibins and activins. As members of the transforming growth factor beta (TGFbeta) superfamily of growth and differentiation factors, these proteins have been shown subsequently to affect a range of tissues and systems beyond their role in reproduction. Studies on the expression and synthesis of activins in the male reproductive tract have localized these proteins in the testis, epididymis and prostate. In general, activins regulate cell proliferation and, consequently, the expression and localization of activin subunit mRNAs and proteins within these organs must be discrete. Activin ligand bioactivity is dependent on the presence of the appropriate receptors and signalling systems, but activin ligand formation or access to receptors is regulated by the formation of inhibins or by activin-binding proteins such as follistatin. This review examines the evidence that the capacity to synthesize activins and to regulate activin bioactivity resides in the cells of the male reproductive tract. It is concluded that activins exert their effects through local (autocrine or paracrine) mechanisms, rather than through endocrine systems. The interplay between the inhibins or follistatins provides a degree of regulation of activin bioactivity before ligand signalling events. The challenge for the future is to determine whether there is any difference between the action of individual activin ligands or whether these proteins are functionally redundant, indicating that compensatory mechanisms are essential for male reproductive tract function.