Activity of supplemental enzymes and their effect on nutrient utilization and growth performance of growing chickens as affected by pelleting temperature.
{"title":"Activity of supplemental enzymes and their effect on nutrient utilization and growth performance of growing chickens as affected by pelleting temperature.","authors":"K Samarasinghe, R Messikommer, C Wenk","doi":"10.1080/17450390009381937","DOIUrl":null,"url":null,"abstract":"<p><p>Activity of supplemental enzymes in a barley-soybean-maize based diet at 60, 75 and 90 degrees C pelleting temperatures was studied using feed viscosity, in-vitro enzyme activity and broiler performance data. High pelleting temperatures increased feed viscosity but supplemented enzymes reduced the viscosity at all three temperatures levels by 11, 14 and 17%, respectively. Water intake and losses in excreta of birds were found to be affected by feed viscosity. Activity of cellulase enzyme, measured using the radial diffusion method, was unaffected at 60 and 75 degrees C, but reduced by 73% in feed processed at 90 degrees C. Enzymes increased the weight gain of broilers by 11.1% at 90 degrees C, but no effect could be seen at low pelleting temperatures possibly due to high dietary protein and energy contents. Feed intake was unaffected by enzymes. Birds consumed 6% more feed and grew 9% faster when the pelleting temperature was increased from 60 to 75 degrees C. Reduced feed intake and daily weight gain observed at 90 degrees C could be fully compensated by the enzyme supplementation. High pelleting temperature reduced energy metabolizability (3.2%) and nitrogen utilization (4%) but enzyme almost compensated them (by 3.3% and 2.6%, respectively). No interaction could be detected between the pelleting temperatures and enzymes. It is concluded that pelleting temperatures as high as 90 degrees C drastically reduce cellulase activity, energy and nitrogen utilization thus lowering broiler performance. Either the remaining activity of cellulase or other thermostable enzymes can prevent the losses.</p>","PeriodicalId":8160,"journal":{"name":"Archiv fur Tierernahrung","volume":"53 1","pages":"45-58"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17450390009381937","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv fur Tierernahrung","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17450390009381937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42
Abstract
Activity of supplemental enzymes in a barley-soybean-maize based diet at 60, 75 and 90 degrees C pelleting temperatures was studied using feed viscosity, in-vitro enzyme activity and broiler performance data. High pelleting temperatures increased feed viscosity but supplemented enzymes reduced the viscosity at all three temperatures levels by 11, 14 and 17%, respectively. Water intake and losses in excreta of birds were found to be affected by feed viscosity. Activity of cellulase enzyme, measured using the radial diffusion method, was unaffected at 60 and 75 degrees C, but reduced by 73% in feed processed at 90 degrees C. Enzymes increased the weight gain of broilers by 11.1% at 90 degrees C, but no effect could be seen at low pelleting temperatures possibly due to high dietary protein and energy contents. Feed intake was unaffected by enzymes. Birds consumed 6% more feed and grew 9% faster when the pelleting temperature was increased from 60 to 75 degrees C. Reduced feed intake and daily weight gain observed at 90 degrees C could be fully compensated by the enzyme supplementation. High pelleting temperature reduced energy metabolizability (3.2%) and nitrogen utilization (4%) but enzyme almost compensated them (by 3.3% and 2.6%, respectively). No interaction could be detected between the pelleting temperatures and enzymes. It is concluded that pelleting temperatures as high as 90 degrees C drastically reduce cellulase activity, energy and nitrogen utilization thus lowering broiler performance. Either the remaining activity of cellulase or other thermostable enzymes can prevent the losses.