{"title":"Arginase in glomerulonephritis.","authors":"S N Waddington, V Cattell","doi":"10.1159/000020660","DOIUrl":null,"url":null,"abstract":"<p><p>Arginase metabolizes L-arginine to L-ornithine and urea. Two arginase isoforms, AI (liver arginase) and AII (ubiquitously expressed, functions unknown), have been identified. It is clear that arginases potentially have important roles in addition to urea generation for high concentrations are present at inflammatory sites. Regulation occurs through cytokines, substrate competition and products of nitric oxide (NO) metabolism. The functions of arginases at inflammatory sites are unknown, but may include regulation of apoptosis and NO production and generation of structural and cellular protein precursors. In glomerulonephritis there is increased arginase activity in nephritic glomeruli following a pattern similar to that in wound healing. The level can be further increased by NO inhibition suggesting substrate competition. The potential sources in the inflamed glomerulus include infiltrating leucocytes and mesangial cells, and the predominant isoform expressed is AI (AII predominates under physiological conditions). The recent identification of different isoforms of arginase has been an important step towards understanding the significance of arginase activity in glomerulonephritis.</p>","PeriodicalId":12179,"journal":{"name":"Experimental nephrology","volume":"8 3","pages":"128-34"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000020660","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental nephrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000020660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
Arginase metabolizes L-arginine to L-ornithine and urea. Two arginase isoforms, AI (liver arginase) and AII (ubiquitously expressed, functions unknown), have been identified. It is clear that arginases potentially have important roles in addition to urea generation for high concentrations are present at inflammatory sites. Regulation occurs through cytokines, substrate competition and products of nitric oxide (NO) metabolism. The functions of arginases at inflammatory sites are unknown, but may include regulation of apoptosis and NO production and generation of structural and cellular protein precursors. In glomerulonephritis there is increased arginase activity in nephritic glomeruli following a pattern similar to that in wound healing. The level can be further increased by NO inhibition suggesting substrate competition. The potential sources in the inflamed glomerulus include infiltrating leucocytes and mesangial cells, and the predominant isoform expressed is AI (AII predominates under physiological conditions). The recent identification of different isoforms of arginase has been an important step towards understanding the significance of arginase activity in glomerulonephritis.