Z H Li, D P Liu, J Wang, Z C Guo, W X Yin, C C Liang
{"title":"Inversion and transposition of Tc1 transposon of C. elegans in mammalian cells.","authors":"Z H Li, D P Liu, J Wang, Z C Guo, W X Yin, C C Liang","doi":"10.1023/a:1024494508878","DOIUrl":null,"url":null,"abstract":"<p><p>Tc1/mariner transposons are widespread in the eukaryotes. In vitro transposition test indicated that the transposase is the only protein that is needed in transpositions. It was shown later that the reconstructed Tc1-like transposon, \"sleeping beauty\" in fish, and the Tc1 transposon in C. elegans jumps in human cells. This discovery indicates that the Tc1/mariner transposon may be engineered as a somatic gene therapy vector if coupled with an efficient gene delivery system. We introduced the Tc1 transposon from C. elegans into different mammalian cell lines and detected the transposition events, indicating that Tc1 transposon functions in different mammalian cells. Interestingly, a high inversion frequency of the transposon was also detected, suggesting that this type of transposon may add variations to host genome when it is horizontally transferred into a new species.</p>","PeriodicalId":21884,"journal":{"name":"Somatic Cell and Molecular Genetics","volume":"24 6","pages":"363-9"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1023/a:1024494508878","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Somatic Cell and Molecular Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1023/a:1024494508878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Tc1/mariner transposons are widespread in the eukaryotes. In vitro transposition test indicated that the transposase is the only protein that is needed in transpositions. It was shown later that the reconstructed Tc1-like transposon, "sleeping beauty" in fish, and the Tc1 transposon in C. elegans jumps in human cells. This discovery indicates that the Tc1/mariner transposon may be engineered as a somatic gene therapy vector if coupled with an efficient gene delivery system. We introduced the Tc1 transposon from C. elegans into different mammalian cell lines and detected the transposition events, indicating that Tc1 transposon functions in different mammalian cells. Interestingly, a high inversion frequency of the transposon was also detected, suggesting that this type of transposon may add variations to host genome when it is horizontally transferred into a new species.