{"title":"Clonal heterogeneity in telomerase activity and telomere length in tumor-derived cell lines.","authors":"I Savre-Train, L S Gollahon, S E Holt","doi":"10.1046/j.1525-1373.2000.22354.x","DOIUrl":null,"url":null,"abstract":"<p><p>The ribonucleoprotein, telomerase, is responsible for the maintenance of telomere length in most immortal and cancer cells. Telomerase appears to be a marker of human malignancy with at least 85% of human cancers expressing its activity. In the present study, we examined a series of tumor-derived and in vitro immortalized cell lines for telomerase activity levels, telomere lengths, and expression levels of the RNA and catalytic components of telomerase. We found significant variability in both telomere lengths and telomerase activity in clones from tumor cells. In addition, the levels of telomerase components or telomerase activity were not predictive of telomere length. Data from clonally derived cells suggest that critically shortened telomeres in these tumor-derived cell lines may signal activation of telomerase activity through an increase in the expression of the catalytic subunit of telomerase. Although clones with low telomerase shorten their telomeres over time, their subclones all have high levels of telomerase activity with no telomere shortening. In addition, analysis of early clones for telomerase activity indicates substantial variability, which suggests that activity levels fluctuate in individual cells. Our data imply that cell populations exhibit a cyclic expression of telomerase activity, which may be partially regulated by telomere shortening.</p>","PeriodicalId":20675,"journal":{"name":"Proceedings of the Society for Experimental Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Society for Experimental Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1046/j.1525-1373.2000.22354.x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
The ribonucleoprotein, telomerase, is responsible for the maintenance of telomere length in most immortal and cancer cells. Telomerase appears to be a marker of human malignancy with at least 85% of human cancers expressing its activity. In the present study, we examined a series of tumor-derived and in vitro immortalized cell lines for telomerase activity levels, telomere lengths, and expression levels of the RNA and catalytic components of telomerase. We found significant variability in both telomere lengths and telomerase activity in clones from tumor cells. In addition, the levels of telomerase components or telomerase activity were not predictive of telomere length. Data from clonally derived cells suggest that critically shortened telomeres in these tumor-derived cell lines may signal activation of telomerase activity through an increase in the expression of the catalytic subunit of telomerase. Although clones with low telomerase shorten their telomeres over time, their subclones all have high levels of telomerase activity with no telomere shortening. In addition, analysis of early clones for telomerase activity indicates substantial variability, which suggests that activity levels fluctuate in individual cells. Our data imply that cell populations exhibit a cyclic expression of telomerase activity, which may be partially regulated by telomere shortening.