{"title":"The role of the E-cadherin/catenin complex in gastrointestinal cancer.","authors":"P Debruyne, S Vermeulen, M Mareel","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer is a genetic disease. The unstable genome of cancer cells causes tumour progression through multiple alterations in suppressor and promoter genes, leading to loss of homeostatic and gain of oncogenic functions. Invasion is the critical step in the acquisition of malignancy. It implicates a continuous molecular conversation of the cancer cells with other cells and with the extracellular matrix in which adhesion molecules are crucial. One of these, E-cadherin, is discussed in the present review. E-cadherin is a transmembrane glycoprotein that forms a complex with cytoplasmic proteins, termed catenins because they link E-cadherin to the actin cytoskeleton. E-cadherin/catenin-mediated intercellular adhesion and communication is mainly homophylic homotypic. There is compelling evidence from experiments in vitro as well as in vivo to accept that the E-cadherin/catenin complex acts as an invasion suppressor. The mechanism of this action is not only through cell-cell adhesion but also through transduction of signals to the cell's motility system. In the replication error positive human colon cancer cell line HCT-8, the alpha E-catenin gene CTNNA1 is an invasion suppressor gene. Here, the transition from the non-invasive to the invasive state was prevented by introduction into the unstable non-invasive cells of either an extra CTNNA1 or a wild type hMSH6 mismatch repair gene. beta-catenin also participates at a complex which comprises the adenomatous polyposis cancer protein APC. In colorectal cancer, mutation of either APC or beta-catenin is oncogenic. Downregulation of the E-cadherin/catenin complex may occur in several ways amongst which are gene mutations, methylation of 5'CpG dinucleotides within the promotor region of E-cadherin, tyrosine phosphorylation of beta-catenin, cell surface expression of proteoglycans sterically hindering E-cadherin and proteolytic release of fragments from the extracellular part of E-cadherin. Upregulation of the E-cadherin/catenin complex has been realized with a series of agents, some of which can be used therapeutically. In most human gastrointestinal cancers the E-cadherin/catenin or related complexes are disturbed and this underscores their pivotal role in the progression of these tumours. Mutations of the E-cadherin gene, including germline mutations, occur in diffuse gastric carcinoma, CpG methylation around the promotor region of E-cadherin in hepatocellular carcinomas and mutations of the APC tumour suppressor gene or in the beta-catenin oncogene in most colorectal cancers. The literature agrees about the disturbance of immunohistochemical patterns of E-cadherin and catenin expression in gastrointestinal cancers. Conflicting opinions do, however, exist about the prognostic value of such immunohistochemical aberrations. We doubt that immunohistochemistry of E-cadherin or catenins add prognostic value to the already used histological grading systems. In our opinion the major benefit from understanding of the E-cadherin/catenin-mediated pathways of invasion will be the development of new anti-invasive treatment strategies.</p>","PeriodicalId":50942,"journal":{"name":"Acta Gastro-Enterologica Belgica","volume":"62 4","pages":"393-402"},"PeriodicalIF":1.5000,"publicationDate":"1999-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Gastro-Enterologica Belgica","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer is a genetic disease. The unstable genome of cancer cells causes tumour progression through multiple alterations in suppressor and promoter genes, leading to loss of homeostatic and gain of oncogenic functions. Invasion is the critical step in the acquisition of malignancy. It implicates a continuous molecular conversation of the cancer cells with other cells and with the extracellular matrix in which adhesion molecules are crucial. One of these, E-cadherin, is discussed in the present review. E-cadherin is a transmembrane glycoprotein that forms a complex with cytoplasmic proteins, termed catenins because they link E-cadherin to the actin cytoskeleton. E-cadherin/catenin-mediated intercellular adhesion and communication is mainly homophylic homotypic. There is compelling evidence from experiments in vitro as well as in vivo to accept that the E-cadherin/catenin complex acts as an invasion suppressor. The mechanism of this action is not only through cell-cell adhesion but also through transduction of signals to the cell's motility system. In the replication error positive human colon cancer cell line HCT-8, the alpha E-catenin gene CTNNA1 is an invasion suppressor gene. Here, the transition from the non-invasive to the invasive state was prevented by introduction into the unstable non-invasive cells of either an extra CTNNA1 or a wild type hMSH6 mismatch repair gene. beta-catenin also participates at a complex which comprises the adenomatous polyposis cancer protein APC. In colorectal cancer, mutation of either APC or beta-catenin is oncogenic. Downregulation of the E-cadherin/catenin complex may occur in several ways amongst which are gene mutations, methylation of 5'CpG dinucleotides within the promotor region of E-cadherin, tyrosine phosphorylation of beta-catenin, cell surface expression of proteoglycans sterically hindering E-cadherin and proteolytic release of fragments from the extracellular part of E-cadherin. Upregulation of the E-cadherin/catenin complex has been realized with a series of agents, some of which can be used therapeutically. In most human gastrointestinal cancers the E-cadherin/catenin or related complexes are disturbed and this underscores their pivotal role in the progression of these tumours. Mutations of the E-cadherin gene, including germline mutations, occur in diffuse gastric carcinoma, CpG methylation around the promotor region of E-cadherin in hepatocellular carcinomas and mutations of the APC tumour suppressor gene or in the beta-catenin oncogene in most colorectal cancers. The literature agrees about the disturbance of immunohistochemical patterns of E-cadherin and catenin expression in gastrointestinal cancers. Conflicting opinions do, however, exist about the prognostic value of such immunohistochemical aberrations. We doubt that immunohistochemistry of E-cadherin or catenins add prognostic value to the already used histological grading systems. In our opinion the major benefit from understanding of the E-cadherin/catenin-mediated pathways of invasion will be the development of new anti-invasive treatment strategies.
期刊介绍:
The Journal Acta Gastro-Enterologica Belgica principally publishes peer-reviewed original manuscripts, reviews, letters to editors, book reviews and guidelines in the field of clinical Gastroenterology and Hepatology, including digestive oncology, digestive pathology, as well as nutrition. Pure animal or in vitro work will not be considered for publication in the Journal. Translational research papers (including sections of animal or in vitro work) are considered by the Journal if they have a clear relationship to or relevance for clinical hepato-gastroenterology (screening, disease mechanisms and/or new therapies). Case reports and clinical images will be accepted if they represent an important contribution to the description, the pathogenesis or the treatment of a specific gastroenterology or liver problem. The language of the Journal is English. Papers from any country will be considered for publication. Manuscripts submitted to the Journal should not have been published previously (in English or any other language), nor should they be under consideration for publication elsewhere. Unsolicited papers are peer-reviewed before it is decided whether they should be accepted, rejected, or returned for revision. Manuscripts that do not meet the presentation criteria (as indicated below) will be returned to the authors. Papers that go too far beyond the scope of the journal will be also returned to the authors by the editorial board generally within 2 weeks. The Journal reserves the right to edit the language of papers accepted for publication for clarity and correctness, and to make formal changes to ensure compliance with AGEB’s style. Authors have the opportunity to review such changes in the proofs.