A simple, inexpensive method for teaching how membrane potentials are generated.

W M Moran, J Denton, K Wilson, M Williams, S W Runge
{"title":"A simple, inexpensive method for teaching how membrane potentials are generated.","authors":"W M Moran,&nbsp;J Denton,&nbsp;K Wilson,&nbsp;M Williams,&nbsp;S W Runge","doi":"10.1152/advances.1999.277.6.S51","DOIUrl":null,"url":null,"abstract":"<p><p>We have developed a simple laboratory exercise that uses an inexpensive dialysis membrane (molecular weight cutoff = 100) to illustrate the generation of membrane potentials (Vm) across plasma membranes of animal cells. A piece of membrane approximately 2.0 cm2 is mounted in an Ussing-like chamber. One chamber half is designated cytosol and the other half external. Chamber sidedness helps students relate their findings to those of real cells. As in real cells, outward directed K+ concentration gradients [high cytosolic K+ concentration ([K+]c) and low extracellular K+ concentration] generate cytosol electrically negative Vm with a slope of approximately -45 mV/decade change in [K+]c. The polarity of Vm reflects the outward flow of potassium ions because flow of the larger counterion, H2PO4-, is restricted to the pores in the membrane. A slope less than Nernstian (<59 mV/decade) suggests that the membrane is slightly permeable to H2PO4-. Importantly, this facilitates teaching the use of the Nernst equation to quantify the relationship between ion concentration ratios across membranes and magnitude of Vm. For example, students use their data and calculate a permeability ratio PK/PH2PO4 that corresponds to a slope of approximately 24% less than Nernstian. This calculation shows that Nernstian slopes are achieved only when permeability to the counterion is zero. Finally, students use the concept of membrane capacitance to calculate the number of ions that cross the membrane. They learn where these ions are located and why the bulk solutions conform to the principle of electroneutrality.</p>","PeriodicalId":7590,"journal":{"name":"American Journal of Physiology","volume":"277 6 Pt 2","pages":"S51-9"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1152/advances.1999.277.6.S51","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1152/advances.1999.277.6.S51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

We have developed a simple laboratory exercise that uses an inexpensive dialysis membrane (molecular weight cutoff = 100) to illustrate the generation of membrane potentials (Vm) across plasma membranes of animal cells. A piece of membrane approximately 2.0 cm2 is mounted in an Ussing-like chamber. One chamber half is designated cytosol and the other half external. Chamber sidedness helps students relate their findings to those of real cells. As in real cells, outward directed K+ concentration gradients [high cytosolic K+ concentration ([K+]c) and low extracellular K+ concentration] generate cytosol electrically negative Vm with a slope of approximately -45 mV/decade change in [K+]c. The polarity of Vm reflects the outward flow of potassium ions because flow of the larger counterion, H2PO4-, is restricted to the pores in the membrane. A slope less than Nernstian (<59 mV/decade) suggests that the membrane is slightly permeable to H2PO4-. Importantly, this facilitates teaching the use of the Nernst equation to quantify the relationship between ion concentration ratios across membranes and magnitude of Vm. For example, students use their data and calculate a permeability ratio PK/PH2PO4 that corresponds to a slope of approximately 24% less than Nernstian. This calculation shows that Nernstian slopes are achieved only when permeability to the counterion is zero. Finally, students use the concept of membrane capacitance to calculate the number of ions that cross the membrane. They learn where these ions are located and why the bulk solutions conform to the principle of electroneutrality.

一种简单,廉价的方法来教授膜电位是如何产生的。
我们开发了一种简单的实验室实验,使用廉价的透析膜(分子量截止值= 100)来说明动物细胞质膜上膜电位(Vm)的产生。一块约2.0平方厘米的膜被安装在一个类似于ussing的腔室中。一个腔室一半指定为细胞质,另一半指定为外部腔室。室侧性帮助学生将他们的发现与真实细胞的发现联系起来。与在真实细胞中一样,向外的K+浓度梯度[高细胞质K+浓度([K+]c)和低细胞外K+浓度]产生细胞质电负Vm,其斜率约为-45 mV/ 10年[K+]c变化。Vm的极性反映了钾离子的向外流动,因为较大的反离子H2PO4-的流动被限制在膜的孔隙中。小于恩氏(
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信