Symmetric covalent linkage of N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) results in novel derivatives with increased inhibitory activities against calcium/calmodulin complex.

Drug design and discovery Pub Date : 1999-11-01
H Yokokura, M Osawa, T Inoue, I Umezawa, Y Naito, M Ikura, H Hidaka
{"title":"Symmetric covalent linkage of N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) results in novel derivatives with increased inhibitory activities against calcium/calmodulin complex.","authors":"H Yokokura,&nbsp;M Osawa,&nbsp;T Inoue,&nbsp;I Umezawa,&nbsp;Y Naito,&nbsp;M Ikura,&nbsp;H Hidaka","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>A useful calmodulin (CaM) antagonist, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), was invented by Hidaka et al. in 1978 (J. Pharmacol. Exp. Ther. 207, 8-15). Here, we have designed new CaM antagonists on the basis of the three-dimensional structure of Ca2+/CaM complexed with W-7. Eleven new compounds all share a similar architecture, in which two W-7 molecules are linked between their aminohexyl termini by a linker with different functionalities. A wide range of inhibitory activities against Ca2+/CaM-dependent protein kinase I (CaM kinase I) has been observed with these self-crosslinked W-7 analogs, (W-7)2. In vitro competitive CaM kinase I assays using CaM kinase I and nuclear magnetic resonance studies indicated that one (W-7)2 molecule binds to one CaM molecule as expected, with the two chloronaphthalene rings of (W-7)2 being anchored separately to the N- and C-terminal hydrophobic pockets of Ca2+/CaM. The most potent compound, N,N'-bis[6-(5-chloro-1-naphthalenesulfonyl)-amino-1-hexyl]-p-xylen e-diamine ((W-7)2 - 10), inhibits CaM kinase I activity at an IC50 value of 0.23 microM; about 75 times more effectively than W-7. The length and basicity of the linker sequence in (W-7)2 significantly contribute to inhibitory activity. The present study opens an avenue for developing powerful CaM antagonists that could be used at low doses in vivo.</p>","PeriodicalId":11297,"journal":{"name":"Drug design and discovery","volume":"16 3","pages":"203-16"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug design and discovery","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A useful calmodulin (CaM) antagonist, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), was invented by Hidaka et al. in 1978 (J. Pharmacol. Exp. Ther. 207, 8-15). Here, we have designed new CaM antagonists on the basis of the three-dimensional structure of Ca2+/CaM complexed with W-7. Eleven new compounds all share a similar architecture, in which two W-7 molecules are linked between their aminohexyl termini by a linker with different functionalities. A wide range of inhibitory activities against Ca2+/CaM-dependent protein kinase I (CaM kinase I) has been observed with these self-crosslinked W-7 analogs, (W-7)2. In vitro competitive CaM kinase I assays using CaM kinase I and nuclear magnetic resonance studies indicated that one (W-7)2 molecule binds to one CaM molecule as expected, with the two chloronaphthalene rings of (W-7)2 being anchored separately to the N- and C-terminal hydrophobic pockets of Ca2+/CaM. The most potent compound, N,N'-bis[6-(5-chloro-1-naphthalenesulfonyl)-amino-1-hexyl]-p-xylen e-diamine ((W-7)2 - 10), inhibits CaM kinase I activity at an IC50 value of 0.23 microM; about 75 times more effectively than W-7. The length and basicity of the linker sequence in (W-7)2 significantly contribute to inhibitory activity. The present study opens an avenue for developing powerful CaM antagonists that could be used at low doses in vivo.

N-(6-氨基己基)-5-氯-1-萘磺酰胺(W-7)的对称共价键导致对钙/钙调素复合物具有增强抑制活性的新型衍生物。
1978年,Hidaka等人发明了一种有用的钙调素(CaM)拮抗剂N-(6-氨基己基)-5-氯-1-萘磺酰胺(W-7)。Exp. Ther. 207,8 -15)。在此,我们基于Ca2+/CaM与W-7络合的三维结构设计了新的CaM拮抗剂。11种新化合物都有相似的结构,其中两个W-7分子通过具有不同功能的连接物连接在它们的氨基己基端。这些自交联的W-7类似物对Ca2+/CaM依赖性蛋白激酶I (CaM激酶I)具有广泛的抑制活性,(W-7)2。使用CaM激酶I和核磁共振研究进行的体外竞争性CaM激酶I分析表明,一个(W-7)2分子与一个CaM分子结合,(W-7)2的两个氯萘环分别锚定在Ca2+/CaM的N端和c端疏水袋上。最有效的化合物N,N'-双[6-(5-氯-1-萘磺基)-氨基-1-己基]-对二甲苯-二胺((W-7)2 - 10)抑制CaM激酶I活性的IC50值为0.23微米;效率是W-7的75倍。(W-7)2中连接子序列的长度和碱度对抑制活性有显著影响。目前的研究为开发低剂量的强效CaM拮抗剂开辟了一条道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信