Frequency component selection for an EEG-based brain to computer interface.

M Pregenzer, G Pfurtscheller
{"title":"Frequency component selection for an EEG-based brain to computer interface.","authors":"M Pregenzer,&nbsp;G Pfurtscheller","doi":"10.1109/86.808944","DOIUrl":null,"url":null,"abstract":"<p><p>A new communication channel for severely handicapped people could be opened with a direct brain to computer interface (BCI). Such a system classifies electrical brain signals online. In a series of training sessions, where electroencephalograph (EEG) signals are recorded on the intact scalp, a classifier is trained to discriminate a limited number of different brain states. In a subsequent series of feedback sessions, where the subject is confronted with the classification results, the subject tries to reduce the number of misclassifications. In this study the relevance of different spectral components is analyzed: 1) on the training sessions to select optimal frequency bands for the feedback sessions and 2) on the feedback sessions to monitor changes.</p>","PeriodicalId":79442,"journal":{"name":"IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society","volume":"7 4","pages":"413-9"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/86.808944","citationCount":"175","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/86.808944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 175

Abstract

A new communication channel for severely handicapped people could be opened with a direct brain to computer interface (BCI). Such a system classifies electrical brain signals online. In a series of training sessions, where electroencephalograph (EEG) signals are recorded on the intact scalp, a classifier is trained to discriminate a limited number of different brain states. In a subsequent series of feedback sessions, where the subject is confronted with the classification results, the subject tries to reduce the number of misclassifications. In this study the relevance of different spectral components is analyzed: 1) on the training sessions to select optimal frequency bands for the feedback sessions and 2) on the feedback sessions to monitor changes.

基于脑电图的脑机接口的频率分量选择。
脑机直接接口(BCI)将为重度残疾人开辟一条新的沟通渠道。这种系统可以在线对大脑电信号进行分类。在一系列训练中,脑电图(EEG)信号被记录在完整的头皮上,分类器被训练来区分有限数量的不同大脑状态。在随后的一系列反馈会话中,受试者面对分类结果,受试者试图减少错误分类的数量。本研究分析了不同频谱分量的相关性:1)在训练时段选择反馈时段的最佳频段;2)在反馈时段监测变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信