Relationship between DNA adduct levels, repair enzyme, and apoptosis as a function of DNA methylation by azoxymethane.

M Y Hong, R S Chapkin, C P Wild, J S Morris, N Wang, R J Carroll, N D Turner, J R Lupton
{"title":"Relationship between DNA adduct levels, repair enzyme, and apoptosis as a function of DNA methylation by azoxymethane.","authors":"M Y Hong,&nbsp;R S Chapkin,&nbsp;C P Wild,&nbsp;J S Morris,&nbsp;N Wang,&nbsp;R J Carroll,&nbsp;N D Turner,&nbsp;J R Lupton","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>DNA alkylating agent exposure results in the formation of a number of DNA adducts, with O6-methyl-deoxyguanosine (O6-medG) being the major mutagenic and cytotoxic DNA lesion. Critical to the prevention of colon cancer is the removal of O6-medG DNA adducts, either through repair, for example, by O6-alkylguanine-DNA alkyltransferase (ATase) or targeted apoptosis. We report how rat colonocytes respond to administration of azoxymethane (a well-characterized experimental colon carcinogen and DNA-methylating agent) in terms of O6-medG DNA adduct formation and adduct removal by ATase and apoptosis. Our results are: (a) DNA damage is greater in actively proliferating cells than in the differentiated cell compartment; (b) expression of the DNA repair enzyme ATase was not targeted to the proliferating cells or stem cells but rather is confined primarily to the upper portion of the crypt; (c) apoptosis is primarily targeted to the stem cell and proliferative compartments; and (d) the increase in DNA repair enzyme expression over time in the bottom one-third of the crypt corresponds with the decrease in apoptosis in this same crypt region.</p>","PeriodicalId":9753,"journal":{"name":"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research","volume":"10 11","pages":"749-58"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

DNA alkylating agent exposure results in the formation of a number of DNA adducts, with O6-methyl-deoxyguanosine (O6-medG) being the major mutagenic and cytotoxic DNA lesion. Critical to the prevention of colon cancer is the removal of O6-medG DNA adducts, either through repair, for example, by O6-alkylguanine-DNA alkyltransferase (ATase) or targeted apoptosis. We report how rat colonocytes respond to administration of azoxymethane (a well-characterized experimental colon carcinogen and DNA-methylating agent) in terms of O6-medG DNA adduct formation and adduct removal by ATase and apoptosis. Our results are: (a) DNA damage is greater in actively proliferating cells than in the differentiated cell compartment; (b) expression of the DNA repair enzyme ATase was not targeted to the proliferating cells or stem cells but rather is confined primarily to the upper portion of the crypt; (c) apoptosis is primarily targeted to the stem cell and proliferative compartments; and (d) the increase in DNA repair enzyme expression over time in the bottom one-third of the crypt corresponds with the decrease in apoptosis in this same crypt region.

DNA加合物水平、修复酶和细胞凋亡在偶氮甲烷甲基化作用下的关系。
DNA烷基化剂暴露导致许多DNA加合物的形成,其中o6 -甲基脱氧鸟苷(O6-medG)是主要的致突变和细胞毒性DNA损伤。预防结肠癌的关键是通过修复(例如,通过o6 -烷基鸟嘌呤-DNA烷基转移酶(ATase))或靶向凋亡去除O6-medG DNA加合物。我们报道了大鼠结肠细胞对偶氮氧甲烷(一种特性良好的实验性结肠癌致癌物和DNA甲基化剂)在ATase和凋亡中O6-medG DNA加合物形成和加合物去除方面的反应。我们的结果是:(a) DNA损伤在活跃增殖细胞中比在分化细胞室中更大;(b) DNA修复酶ATase的表达不是针对增殖细胞或干细胞,而是主要局限于隐窝的上部;(c)细胞凋亡主要针对干细胞和增殖室;(d)随着时间的推移,隐窝底部三分之一DNA修复酶表达的增加与同一隐窝区域细胞凋亡的减少相对应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信