{"title":"Regulation of p27Kip1 accumulation in murine B-lymphoma cells: role of c-Myc and calcium.","authors":"D Donjerković, L Zhang, D W Scott","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>IgM cross-linking induces G1 arrest and apoptosis in murine B-lymphoma cells. It prevents pRb phosphorylation by decreasing cyclin-dependent kinase 2 activity via the up-regulation of cyclin kinase inhibitor p27Kip1. Anti-IgM also causes an increase in cytosolic free calcium and a loss of c-myc mRNA and protein. This down-regulation of c-Myc is prevented by CD40L, which rescues cells from anti-IgM-induced apoptosis. In this study, we addressed the mechanism(s) of anti-IgM-induced p27Kip1 accumulation. We examined effects of early events in B-cell receptor-mediated signaling, c-Myc down-regulation, and an increase in free calcium on p27Kip1. Down-regulation of c-myc alone had no effect on p27Kip1; neither did an increase in free calcium alone. Together, these two events led to p27Kip1 induction, growth arrest, and apoptosis. CD40L, the calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester, and cyclosporin A all prevented anti-IgM-induced p27Kip1 accumulation, suggesting that both the decrease in c-Myc expression and an increase in free calcium are necessary for p27Kip1 up-regulation.</p>","PeriodicalId":9753,"journal":{"name":"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research","volume":"10 10","pages":"695-704"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
IgM cross-linking induces G1 arrest and apoptosis in murine B-lymphoma cells. It prevents pRb phosphorylation by decreasing cyclin-dependent kinase 2 activity via the up-regulation of cyclin kinase inhibitor p27Kip1. Anti-IgM also causes an increase in cytosolic free calcium and a loss of c-myc mRNA and protein. This down-regulation of c-Myc is prevented by CD40L, which rescues cells from anti-IgM-induced apoptosis. In this study, we addressed the mechanism(s) of anti-IgM-induced p27Kip1 accumulation. We examined effects of early events in B-cell receptor-mediated signaling, c-Myc down-regulation, and an increase in free calcium on p27Kip1. Down-regulation of c-myc alone had no effect on p27Kip1; neither did an increase in free calcium alone. Together, these two events led to p27Kip1 induction, growth arrest, and apoptosis. CD40L, the calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester, and cyclosporin A all prevented anti-IgM-induced p27Kip1 accumulation, suggesting that both the decrease in c-Myc expression and an increase in free calcium are necessary for p27Kip1 up-regulation.