{"title":"Water and electrolyte shifts with partial fluid replacement during exercise.","authors":"B Sanders, T D Noakes, S C Dennis","doi":"10.1007/s004210050598","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we examined whether athletes, who typically replace only approximately 50% of their fluid losses during moderate-duration endurance exercise, should attempt to replace their Na+ losses to maintain extracellular fluid volume. Six male cyclists performed three 90-min rides at 65% of peak O2 uptake in a 32 degrees C environment and ingested either no fluid (NF), 1.21 of water (W), or saline (S) containing 100 mmol of NaCl x l(-1) to replace their electrolyte losses. Both W and S conditions decreased final heart rates by approximately 10 betas min(-1) (P<0.005) and reduced falls in plasma volume (PV) by approximately 4% (P<0.05). Maintenance of PV after 10 min in the W trial prevented further rises in plasma concentrations of Na+ [Na+], Cl- and protein but in the S and NF trials, plasma [Na+] continued to increase by approximately 4 mEq x l(-1). Differences in plasma [Na+] had little effect on the approximately 2.4 l fluid, approximately 120 mEq Na+ and approximately 50 mEq K+ losses in sweat and urine in the three trials. The main effects of W and S were on body fluid shifts. During the NF trial, PV and interstitial fluid (ISF) and intracellular fluid (ICF) volumes decreased by approximately 0.1, 1.2 and 1.0 l, respectively. In the W trial, the approximately 1.2 l fluid and approximately 120 mEq Na+ losses contracted the ISF volume, and in the S trial, ISF volume was maintained by the movement of water from the ICF. Since the W and S trials were equally effective in maintaining PV, Na+ ingestion may not be of much advantage to athletes who typically replace only approximately 50% of their fluid losses during competitive endurance exercise.</p>","PeriodicalId":11936,"journal":{"name":"European Journal of Applied Physiology and Occupational Physiology","volume":"80 4","pages":"318-23"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s004210050598","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Physiology and Occupational Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s004210050598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49
Abstract
In this study, we examined whether athletes, who typically replace only approximately 50% of their fluid losses during moderate-duration endurance exercise, should attempt to replace their Na+ losses to maintain extracellular fluid volume. Six male cyclists performed three 90-min rides at 65% of peak O2 uptake in a 32 degrees C environment and ingested either no fluid (NF), 1.21 of water (W), or saline (S) containing 100 mmol of NaCl x l(-1) to replace their electrolyte losses. Both W and S conditions decreased final heart rates by approximately 10 betas min(-1) (P<0.005) and reduced falls in plasma volume (PV) by approximately 4% (P<0.05). Maintenance of PV after 10 min in the W trial prevented further rises in plasma concentrations of Na+ [Na+], Cl- and protein but in the S and NF trials, plasma [Na+] continued to increase by approximately 4 mEq x l(-1). Differences in plasma [Na+] had little effect on the approximately 2.4 l fluid, approximately 120 mEq Na+ and approximately 50 mEq K+ losses in sweat and urine in the three trials. The main effects of W and S were on body fluid shifts. During the NF trial, PV and interstitial fluid (ISF) and intracellular fluid (ICF) volumes decreased by approximately 0.1, 1.2 and 1.0 l, respectively. In the W trial, the approximately 1.2 l fluid and approximately 120 mEq Na+ losses contracted the ISF volume, and in the S trial, ISF volume was maintained by the movement of water from the ICF. Since the W and S trials were equally effective in maintaining PV, Na+ ingestion may not be of much advantage to athletes who typically replace only approximately 50% of their fluid losses during competitive endurance exercise.