{"title":"Gene regulation of atrial natriuretic peptide A, B, and C receptors in rat glomeruli.","authors":"K Itoh, H Nonoguchi, N Shiraishi, K Tomita","doi":"10.1159/000020621","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and methods: </strong>Atrial natriuretic peptide (ANP) has three types of receptor. We investigated the gene regulation of three types of ANP receptors (ANPR-A, B, and C) in rat glomeruli using reverse transcription coupled with competitive polymerase chain reaction (PCR).</p><p><strong>Results: </strong>Competitive PCR revealed that ANPR-C mRNA expression was most abundant (ANPR-C > A >> B) in glomeruli from control rats among mRNA expressions of three receptors, which were 20- to 15,000-fold higher than those in inner medullary collecting ducts. Two days' dehydration caused reversible decreases of ANPR-A, B, and C mRNAs by 50-80%. To determine the mechanisms of down-regulation of mRNA expression, isolated glomeruli were incubated in isotonic or hypertonic solution. Hyperosmolality induced by NaCl, mannitol or raffinose caused significant increases of ANPR-A, B, and C mRNA expression. Hypertonicity by urea showed smaller effects. ANP stimulated the expression of ANPR-A, B, and C mRNA in vitro.</p><p><strong>Conclusion: </strong>These results indicate that dehydration caused reversible decreases of ANPR-A, B, and C mRNA expression in glomeruli, and these decreases were not caused by increased plasma osmolality but probably by lower circulating levels of ANP.</p>","PeriodicalId":12179,"journal":{"name":"Experimental nephrology","volume":"7 4","pages":"328-36"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000020621","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental nephrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000020621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Background and methods: Atrial natriuretic peptide (ANP) has three types of receptor. We investigated the gene regulation of three types of ANP receptors (ANPR-A, B, and C) in rat glomeruli using reverse transcription coupled with competitive polymerase chain reaction (PCR).
Results: Competitive PCR revealed that ANPR-C mRNA expression was most abundant (ANPR-C > A >> B) in glomeruli from control rats among mRNA expressions of three receptors, which were 20- to 15,000-fold higher than those in inner medullary collecting ducts. Two days' dehydration caused reversible decreases of ANPR-A, B, and C mRNAs by 50-80%. To determine the mechanisms of down-regulation of mRNA expression, isolated glomeruli were incubated in isotonic or hypertonic solution. Hyperosmolality induced by NaCl, mannitol or raffinose caused significant increases of ANPR-A, B, and C mRNA expression. Hypertonicity by urea showed smaller effects. ANP stimulated the expression of ANPR-A, B, and C mRNA in vitro.
Conclusion: These results indicate that dehydration caused reversible decreases of ANPR-A, B, and C mRNA expression in glomeruli, and these decreases were not caused by increased plasma osmolality but probably by lower circulating levels of ANP.