{"title":"Unmodified supported thiol/lipid bilayers: studies of structural disorder and conducting mechanism by cyclic voltammetry and AC impedance","authors":"Peng Diao , Dianlu Jiang , Xiaoli Cui , Dengping Gu , Ruting Tong , Bing Zhong","doi":"10.1016/S0302-4598(99)00038-0","DOIUrl":null,"url":null,"abstract":"<div><p>Supported thiol/lipid bilayer assembly, one of the most spectacular bilayer systems in recent years, has provided a good model to study biomembranes because of its high mechanical stability. In this work, the structural and conducting property of unmodified Au supported octadecanethiol/phosphatidylcholine bilayers were investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The forming process of bilayer was monitored by capacitance plane plot. The normalized membrane capacitance of supported bilayer is 0.52 μF cm<sup>−2</sup>. Kinetically controlled voltammograms determined by Butler–Volmer equation were obtained for both thiol monolayer and thiol/lipid bilayer in linear sweep voltammetry. Results of EIS experiment indicate that collapsed sites and pinhole defects exist in thiol monolayer and lipid monolayer, respectively. The difference between the values of experimental and theoretical standard electron transfer rate constant indicates that the conducting mechanism of Au supported thiol monolayer is electron tunneling at collapsed sites. The conducting mechanism of Au supported thiol/lipid bilayer is attributed as the following: the electroactive species could diffuse through pinholes in the lipid monolayer and reach collapsed sites in thiol monolayer, where electron transfer occurs via a tunneling process. The fractional coverage of the lipid monolayer measure by EIS experiments is about 0.98 or higher.</p></div>","PeriodicalId":79804,"journal":{"name":"Bioelectrochemistry and bioenergetics (Lausanne, Switzerland)","volume":"48 2","pages":"Pages 469-475"},"PeriodicalIF":0.0000,"publicationDate":"1999-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0302-4598(99)00038-0","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry and bioenergetics (Lausanne, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0302459899000380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
Supported thiol/lipid bilayer assembly, one of the most spectacular bilayer systems in recent years, has provided a good model to study biomembranes because of its high mechanical stability. In this work, the structural and conducting property of unmodified Au supported octadecanethiol/phosphatidylcholine bilayers were investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The forming process of bilayer was monitored by capacitance plane plot. The normalized membrane capacitance of supported bilayer is 0.52 μF cm−2. Kinetically controlled voltammograms determined by Butler–Volmer equation were obtained for both thiol monolayer and thiol/lipid bilayer in linear sweep voltammetry. Results of EIS experiment indicate that collapsed sites and pinhole defects exist in thiol monolayer and lipid monolayer, respectively. The difference between the values of experimental and theoretical standard electron transfer rate constant indicates that the conducting mechanism of Au supported thiol monolayer is electron tunneling at collapsed sites. The conducting mechanism of Au supported thiol/lipid bilayer is attributed as the following: the electroactive species could diffuse through pinholes in the lipid monolayer and reach collapsed sites in thiol monolayer, where electron transfer occurs via a tunneling process. The fractional coverage of the lipid monolayer measure by EIS experiments is about 0.98 or higher.