Evaluation of a new biochemical index for the estimation of bone demineralization using artificial intelligence.

Contemporary orthopaedics Pub Date : 1995-04-01
S D Barnhill, Z Zhang, K R Madyastha
{"title":"Evaluation of a new biochemical index for the estimation of bone demineralization using artificial intelligence.","authors":"S D Barnhill,&nbsp;Z Zhang,&nbsp;K R Madyastha","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The use of artificial neural networks (ANN) for the identification of a positive correlation between the QuiOs quotient, a single-valued indicator of bone mineral density, and multisite dual energy x-ray absorptiometry (DEXA) measurements is described. The measurements were obtained using the Hologic QDRR-2000 x-ray bone densitometer in a multicenter clinical trial including 374 female patients. The QuiOs quotient estimates bone mineral density and determines the severity of bone density loss. This quotient is calculated by using a proprietary software program to perform a multivariate analysis of the results of testing of serum levels of calcium, phosphate, total alkaline phosphate, two alkaline phosphatase isoenzymes (liver and intestine), estradiol, and progesterone. The results show that given the four DEXA measurements obtained from the bone densitometer, the trained neural network can predict whether the corresponding QuiOs score of the same patient will be below the cutoff score of 0.690. The findings in this study indicate a positive correlation between DEXA measurements and the QuiOs quotient obtained from two different sources.</p>","PeriodicalId":79846,"journal":{"name":"Contemporary orthopaedics","volume":"30 4","pages":"315-8"},"PeriodicalIF":0.0000,"publicationDate":"1995-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary orthopaedics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of artificial neural networks (ANN) for the identification of a positive correlation between the QuiOs quotient, a single-valued indicator of bone mineral density, and multisite dual energy x-ray absorptiometry (DEXA) measurements is described. The measurements were obtained using the Hologic QDRR-2000 x-ray bone densitometer in a multicenter clinical trial including 374 female patients. The QuiOs quotient estimates bone mineral density and determines the severity of bone density loss. This quotient is calculated by using a proprietary software program to perform a multivariate analysis of the results of testing of serum levels of calcium, phosphate, total alkaline phosphate, two alkaline phosphatase isoenzymes (liver and intestine), estradiol, and progesterone. The results show that given the four DEXA measurements obtained from the bone densitometer, the trained neural network can predict whether the corresponding QuiOs score of the same patient will be below the cutoff score of 0.690. The findings in this study indicate a positive correlation between DEXA measurements and the QuiOs quotient obtained from two different sources.

用人工智能评价一种新的骨脱矿生化指标。
描述了使用人工神经网络(ANN)来识别QuiOs商(骨矿物质密度的单值指标)与多位点双能x射线吸收仪(DEXA)测量之间的正相关性。测量结果是在一项包括374名女性患者的多中心临床试验中使用Hologic QDRR-2000 x射线骨密度计获得的。QuiOs商估计骨密度,并确定骨密度损失的严重程度。该商数是通过使用专有软件程序对血清钙、磷酸盐、总碱性磷酸盐、两种碱性磷酸酶同工酶(肝脏和肠道)、雌二醇和黄体酮水平的测试结果进行多变量分析来计算的。结果表明,给定骨密度计获得的4个DEXA测量值,训练后的神经网络可以预测同一患者对应的QuiOs评分是否会低于0.690的临界值。本研究的结果表明,DEXA测量和QuiOs商之间的正相关,从两个不同的来源获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信