Cosmological analogues of the Bartnik-McKinnon solutions.

Volkov, Straumann, Lavrelashvili, Heusler, Brodbeck
{"title":"Cosmological analogues of the Bartnik-McKinnon solutions.","authors":"Volkov, Straumann, Lavrelashvili, Heusler, Brodbeck","doi":"10.1103/physrevd.54.7243","DOIUrl":null,"url":null,"abstract":"We present a numerical classification of the spherically symmetric, static solutions to the Einstein-Yang-Mills equations with a cosmological constant $\\ensuremath{\\Lambda}$. We find three qualitatively different classes of configurations, where the solutions in each class are characterized by the value of $\\ensuremath{\\Lambda}$ and the number of nodes, $n$, of the Yang-Mills amplitude. For sufficiently small, positive values of the cosmological constant, $\\ensuremath{\\Lambda}l{\\ensuremath{\\Lambda}}_{\\mathrm{crit}}(n)$, the solutions generalize the Bartnik-McKinnon solitons, which are now surrounded by a cosmological horizon and approach the de Sitter geometry in the asymptotic region. For a discrete set of values ${\\ensuremath{\\Lambda}}_{\\mathrm{reg}}(n)g{\\ensuremath{\\Lambda}}_{\\mathrm{crit}}(n)$, the solutions are topologically three-spheres, the ground state ($n=1$) being the Einstein universe. In the intermediate region, that is, for ${\\ensuremath{\\Lambda}}_{\\mathrm{crit}}(n)l\\ensuremath{\\Lambda}l{\\ensuremath{\\Lambda}}_{\\mathrm{reg}}(n)$, there exists a discrete family of global solutions with an horizon and \"finite size.\"","PeriodicalId":79708,"journal":{"name":"Physical review. D, Particles and fields","volume":"54 12","pages":"7243-7251"},"PeriodicalIF":0.0000,"publicationDate":"1996-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1103/physrevd.54.7243","citationCount":"60","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. D, Particles and fields","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevd.54.7243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

Abstract

We present a numerical classification of the spherically symmetric, static solutions to the Einstein-Yang-Mills equations with a cosmological constant $\ensuremath{\Lambda}$. We find three qualitatively different classes of configurations, where the solutions in each class are characterized by the value of $\ensuremath{\Lambda}$ and the number of nodes, $n$, of the Yang-Mills amplitude. For sufficiently small, positive values of the cosmological constant, $\ensuremath{\Lambda}l{\ensuremath{\Lambda}}_{\mathrm{crit}}(n)$, the solutions generalize the Bartnik-McKinnon solitons, which are now surrounded by a cosmological horizon and approach the de Sitter geometry in the asymptotic region. For a discrete set of values ${\ensuremath{\Lambda}}_{\mathrm{reg}}(n)g{\ensuremath{\Lambda}}_{\mathrm{crit}}(n)$, the solutions are topologically three-spheres, the ground state ($n=1$) being the Einstein universe. In the intermediate region, that is, for ${\ensuremath{\Lambda}}_{\mathrm{crit}}(n)l\ensuremath{\Lambda}l{\ensuremath{\Lambda}}_{\mathrm{reg}}(n)$, there exists a discrete family of global solutions with an horizon and "finite size."
巴尼克-麦金农解的宇宙学类比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信