{"title":"Progress and expectations for helminth vaccines.","authors":"E N Meeusen, J F Maddox","doi":"10.1016/s0065-3519(99)80019-6","DOIUrl":null,"url":null,"abstract":"<p><p>The large amount of scientific progress made in the last 5 years has allowed a more rational approach to the design of nematode vaccines to develop. Successful experimental trials have been published using two different approaches, one aiming to boost acquired host immunity through vaccination with natural immunogens, the other affecting parasite viability by targeting parasite molecules crucial for nutrition or survival in the host. The individual or combined action of these two vaccination procedures will need to be evaluated with respect to their potential effects on animal health and productivity in the field. To this effect, more data are required concerning the level and duration of immunity of the vaccine-induced protection using acceptable adjuvant systems. In addition, the age at which vaccination is effective and the effect of vaccination on highly susceptible or temporarily immunosuppressed individuals will need to be considered. In the case of gastrointestinal nematodes, the level of pasture contamination with infective larvae is dependent on the worm burdens in the host animal and, in turn, affects the buildup of natural resistance in the host. An appreciation of these complex interactive factors is best achieved through computer simulation models using the powerful simulation software that has recently become available. Further animal trials will need to be performed to establish the necessary data to incorporate into the models and to adapt the model outcomes to the trial results. These epidemiologic and simulation studies should be pursued in parallel with vaccine development so that a better appreciation is gained of the requirements of a successful commercial vaccine.</p>","PeriodicalId":72111,"journal":{"name":"Advances in veterinary medicine","volume":"41 ","pages":"241-56"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/s0065-3519(99)80019-6","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in veterinary medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/s0065-3519(99)80019-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
The large amount of scientific progress made in the last 5 years has allowed a more rational approach to the design of nematode vaccines to develop. Successful experimental trials have been published using two different approaches, one aiming to boost acquired host immunity through vaccination with natural immunogens, the other affecting parasite viability by targeting parasite molecules crucial for nutrition or survival in the host. The individual or combined action of these two vaccination procedures will need to be evaluated with respect to their potential effects on animal health and productivity in the field. To this effect, more data are required concerning the level and duration of immunity of the vaccine-induced protection using acceptable adjuvant systems. In addition, the age at which vaccination is effective and the effect of vaccination on highly susceptible or temporarily immunosuppressed individuals will need to be considered. In the case of gastrointestinal nematodes, the level of pasture contamination with infective larvae is dependent on the worm burdens in the host animal and, in turn, affects the buildup of natural resistance in the host. An appreciation of these complex interactive factors is best achieved through computer simulation models using the powerful simulation software that has recently become available. Further animal trials will need to be performed to establish the necessary data to incorporate into the models and to adapt the model outcomes to the trial results. These epidemiologic and simulation studies should be pursued in parallel with vaccine development so that a better appreciation is gained of the requirements of a successful commercial vaccine.