{"title":"Mechanistic comparison of artificial-chaperone-assisted and unassisted refolding of urea-denatured carbonic anhydrase B","authors":"Peter E. Hanson , Samuel H. Gellman","doi":"10.1016/S1359-0278(98)00063-7","DOIUrl":null,"url":null,"abstract":"<div><p><strong>Background:</strong> We have previously described a method for the refolding of chemically denatured proteins in which small molecules (‘artificial chaperones’, a detergent and cyclodextrin) assist renaturation. In a previous analysis of lysozyme refolding from the GdmCl-denatured, DTT-reduced state, we found that enzymatic activity is regained at indistinguishable rates for unassisted (absence of additives) and artificial-chaperone-assisted refolding. While unassisted and artificial-chaperone-assisted refolding rates could also be directly compared for GdmCl-denatured bovine carbonic anhydrase B (CAB), only cationic detergents could be used as assistants. We therefore set out to determine whether artificial chaperones could assist the refolding of urea-denatured CAB, whether the charge and structure of the detergent used affects refolding assistance, and, if so, whether the assistance is mechanistically similar to that observed for GdmCl-denatured CAB.</p><p><strong>Results:</strong> Our results indicate that CAB can be refolded from the urea-denatured state via the artificial chaperone process, using both anionic and cationic detergents. There is a distinctive product-determining step early in the artificial-chaperone-assisted refolding mechanism, but the rate-determining steps of the unassisted and artificial-chaperone-assisted processes are indistinguishable.</p><p><strong>Conclusions:</strong>Because the rate-determining steps of unassisted and artificial-chaperone-assisted refolding are indistinguishable, we conclude that the rate-determining step of CAB refolding is unaffected by the use of artificial chaperones. Our observations also suggest that denatured CAB undergoes a slow partial folding in concentrated urea solution.</p></div>","PeriodicalId":79488,"journal":{"name":"Folding & design","volume":"3 6","pages":"Pages 457-468"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1359-0278(98)00063-7","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folding & design","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359027898000637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27
Abstract
Background: We have previously described a method for the refolding of chemically denatured proteins in which small molecules (‘artificial chaperones’, a detergent and cyclodextrin) assist renaturation. In a previous analysis of lysozyme refolding from the GdmCl-denatured, DTT-reduced state, we found that enzymatic activity is regained at indistinguishable rates for unassisted (absence of additives) and artificial-chaperone-assisted refolding. While unassisted and artificial-chaperone-assisted refolding rates could also be directly compared for GdmCl-denatured bovine carbonic anhydrase B (CAB), only cationic detergents could be used as assistants. We therefore set out to determine whether artificial chaperones could assist the refolding of urea-denatured CAB, whether the charge and structure of the detergent used affects refolding assistance, and, if so, whether the assistance is mechanistically similar to that observed for GdmCl-denatured CAB.
Results: Our results indicate that CAB can be refolded from the urea-denatured state via the artificial chaperone process, using both anionic and cationic detergents. There is a distinctive product-determining step early in the artificial-chaperone-assisted refolding mechanism, but the rate-determining steps of the unassisted and artificial-chaperone-assisted processes are indistinguishable.
Conclusions:Because the rate-determining steps of unassisted and artificial-chaperone-assisted refolding are indistinguishable, we conclude that the rate-determining step of CAB refolding is unaffected by the use of artificial chaperones. Our observations also suggest that denatured CAB undergoes a slow partial folding in concentrated urea solution.