Alessandra Pasquo , Maria Chiara Nardi , Nazzareno Dimasi , Licia Tomei , Christian Steinkühler , Paola Delmastro , Anna Tramontano , Raffaele De Francesco
{"title":"Rational design and functional expression of a constitutively active single-chain NS4A–NS3 proteinase","authors":"Alessandra Pasquo , Maria Chiara Nardi , Nazzareno Dimasi , Licia Tomei , Christian Steinkühler , Paola Delmastro , Anna Tramontano , Raffaele De Francesco","doi":"10.1016/S1359-0278(98)00060-1","DOIUrl":null,"url":null,"abstract":"<div><p><strong>Background:</strong> The proteinase domain of the hepatitis C virus NS3 protein is involved in the maturation of the viral polyprotein. A central hydrophobic domain of the NS4A protein is required as a cofactor for its proteolytic activity. The three-dimensional structure of the proteinase domain alone and complexed with an NS4A-derived peptide has been solved recently and revealed that the N terminus of the proteinase is in near proximity to the C terminus of the cofactor. To study the molecular basis of the enzyme activation by its cofactor and to overcome the difficulties of structural and functional investigation associated with a two-species complex, we rationally designed a link to bridge the two molecules in order to have a single polypeptide construct.</p><p><strong>Results:</strong> The engineered construct led to the production of a stable, monomeric protein with proteolytic activity that is independent from the addition of a synthetic peptide representing the cofactor domain of the NS4A protein. The protein is active on both protein and synthetic peptide substrates. Spectroscopic and kinetic analysis of the recombinant NS4A–NS3 single-chain proteinase demonstrated features superimposable with the isolated NS3 proteinase domain complexed with the NS4A cofactor.</p><p><strong>Conclusions:</strong>We designed a very tight connection between the NS3 and NS4A polypeptide chains with the rationale that this would allow a more stable structure to be formed. The engineered single-chain enzyme was indistinguishable from the NS3 proteinase complexed with its NS4A cofactor in all enzymatic and physico-chemical properties investigated.</p></div>","PeriodicalId":79488,"journal":{"name":"Folding & design","volume":"3 6","pages":"Pages 433-441"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1359-0278(98)00060-1","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folding & design","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359027898000601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Background: The proteinase domain of the hepatitis C virus NS3 protein is involved in the maturation of the viral polyprotein. A central hydrophobic domain of the NS4A protein is required as a cofactor for its proteolytic activity. The three-dimensional structure of the proteinase domain alone and complexed with an NS4A-derived peptide has been solved recently and revealed that the N terminus of the proteinase is in near proximity to the C terminus of the cofactor. To study the molecular basis of the enzyme activation by its cofactor and to overcome the difficulties of structural and functional investigation associated with a two-species complex, we rationally designed a link to bridge the two molecules in order to have a single polypeptide construct.
Results: The engineered construct led to the production of a stable, monomeric protein with proteolytic activity that is independent from the addition of a synthetic peptide representing the cofactor domain of the NS4A protein. The protein is active on both protein and synthetic peptide substrates. Spectroscopic and kinetic analysis of the recombinant NS4A–NS3 single-chain proteinase demonstrated features superimposable with the isolated NS3 proteinase domain complexed with the NS4A cofactor.
Conclusions:We designed a very tight connection between the NS3 and NS4A polypeptide chains with the rationale that this would allow a more stable structure to be formed. The engineered single-chain enzyme was indistinguishable from the NS3 proteinase complexed with its NS4A cofactor in all enzymatic and physico-chemical properties investigated.