{"title":"HMG CoA reductase inhibitor accelerates aging effect on diaphragm mitochondrial respiratory function in rats.","authors":"S Sugiyama","doi":"10.1080/15216549800204472","DOIUrl":null,"url":null,"abstract":"<p><p>We examined effects of pravastatin on age-related changes in mitochondrial function in rats. Decline in the activity of complex I of the mitochondrial electron transport chain was observed in diaphragm and psoai major in rats aged 35 and 55 weeks, and that of complex IV in rats aged 55 weeks. Pravastatin accelerated significantly age-related decline in the activity of complex I of diaphragm mitochondria, though pravastatin did not show significant effect on normally observed age-associated decline in the activities of complex IV of psoai major and diaphragm mitochondria. Aging effect on mitochondrial respiratory function was not observed on heart muscle and liver in rats up to 55 weeks old, and pravastatin did not effect significantly heart and liver mitochondrial respiratory function. From these results, careful clinical examination on respiratory muscle function should be necessary in patients treated with pravastatin particularly in elderly patients.</p>","PeriodicalId":8770,"journal":{"name":"Biochemistry and molecular biology international","volume":"46 5","pages":"923-31"},"PeriodicalIF":0.0000,"publicationDate":"1998-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15216549800204472","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and molecular biology international","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15216549800204472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
We examined effects of pravastatin on age-related changes in mitochondrial function in rats. Decline in the activity of complex I of the mitochondrial electron transport chain was observed in diaphragm and psoai major in rats aged 35 and 55 weeks, and that of complex IV in rats aged 55 weeks. Pravastatin accelerated significantly age-related decline in the activity of complex I of diaphragm mitochondria, though pravastatin did not show significant effect on normally observed age-associated decline in the activities of complex IV of psoai major and diaphragm mitochondria. Aging effect on mitochondrial respiratory function was not observed on heart muscle and liver in rats up to 55 weeks old, and pravastatin did not effect significantly heart and liver mitochondrial respiratory function. From these results, careful clinical examination on respiratory muscle function should be necessary in patients treated with pravastatin particularly in elderly patients.