Estimating the mean value of occupational exposures.

X H Zhou
{"title":"Estimating the mean value of occupational exposures.","authors":"X H Zhou","doi":"10.1080/15428119891010965","DOIUrl":null,"url":null,"abstract":"<p><p>It is very important to provide an accurate estimate for the mean value of lognormal distributed occupational exposures. Four commonly used methods for estimating a lognormal mean are the sample mean, the maximum likelihood estimate (MLE), a bias-corrected MLE, and the minimum variance unbiased estimator (MVUE). In this article the explicit expressions are given for the mean square errors of these four estimators, and performances of these four estimators are compared in terms of their mean square errors. This article reaffirms the conclusion of earlier researchers that the MVUE is uniformly superior to the other three estimators.</p>","PeriodicalId":7930,"journal":{"name":"American Industrial Hygiene Association journal","volume":"59 11","pages":"785-8"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15428119891010965","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Industrial Hygiene Association journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15428119891010965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

It is very important to provide an accurate estimate for the mean value of lognormal distributed occupational exposures. Four commonly used methods for estimating a lognormal mean are the sample mean, the maximum likelihood estimate (MLE), a bias-corrected MLE, and the minimum variance unbiased estimator (MVUE). In this article the explicit expressions are given for the mean square errors of these four estimators, and performances of these four estimators are compared in terms of their mean square errors. This article reaffirms the conclusion of earlier researchers that the MVUE is uniformly superior to the other three estimators.

估计职业暴露的平均值。
对对数正态分布职业暴露的均值提供一个准确的估计是非常重要的。估计对数正态均值的四种常用方法是样本均值、最大似然估计(MLE)、偏差校正的最大似然估计(MLE)和最小方差无偏估计(MVUE)。本文给出了这四种估计器的均方误差的显式表达式,并从均方误差的角度比较了这四种估计器的性能。本文重申了早期研究者的结论,即MVUE一致优于其他三种估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信