{"title":"Volume determination of human metaphase chromosomes by scanning force microscopy.","authors":"W Fritzsche, E Henderson","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The scanning force microscopy (SFM) yields the topography of the investigated surface. A procedure was developed which starts from this three-dimensional information to estimate the volume of a biological specimen. The volume of spread human metaphase chromosomes was determined in air and rehydrated in aqueous buffer. A difference of the determined volume of a air-dried metaphase chromosome set was found compared to values from electron microscopic investigations, and could be correlated with differences in the hydration state of the chromosomes. SFM-based relative volumes of air-dried chromosomes resembles literature data regarding volume range and distribution. Possible application of SFM-based relative volume measurements for chromosome classification purposes is discussed.</p>","PeriodicalId":21502,"journal":{"name":"Scanning microscopy","volume":"10 1","pages":"103-8; discussion 108-10"},"PeriodicalIF":0.0000,"publicationDate":"1996-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scanning microscopy","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The scanning force microscopy (SFM) yields the topography of the investigated surface. A procedure was developed which starts from this three-dimensional information to estimate the volume of a biological specimen. The volume of spread human metaphase chromosomes was determined in air and rehydrated in aqueous buffer. A difference of the determined volume of a air-dried metaphase chromosome set was found compared to values from electron microscopic investigations, and could be correlated with differences in the hydration state of the chromosomes. SFM-based relative volumes of air-dried chromosomes resembles literature data regarding volume range and distribution. Possible application of SFM-based relative volume measurements for chromosome classification purposes is discussed.