Anandamide synthesis is induced by arachidonate mobilizing agonists in cells of the immune system

Vasumati K. Pestonjamasp , Sumner H. Burstein
{"title":"Anandamide synthesis is induced by arachidonate mobilizing agonists in cells of the immune system","authors":"Vasumati K. Pestonjamasp ,&nbsp;Sumner H. Burstein","doi":"10.1016/S0005-2760(98)00110-6","DOIUrl":null,"url":null,"abstract":"<div><p>The hypothesis that the capability of agents to mobilize arachidonic acid (AA) could predict increased anandamide (ANA) synthesis in a macrophage cell line has been examined. Lipopolysaccharide (LPS), platelet-activating factor (PAF) and cannabinoids such as Δ<sup>9</sup>-tetrahydrocannabinol (THC) and anandamide were all found to be agonists for the release of AA and led to increased ANA synthesis in RAW264.7 mouse macrophage cells. Nitric oxide, in contrast, stimulated AA release without raising ANA levels. ANA stimulation of its own synthesis indicates the existence of a positive feedback mechanism. The possible involvement of the CB2 receptor in THC-mediated AA release and ANA synthesis is addressed using the antagonist SR144528. ANA synthesis is also increased by the combination of calcium ionophore and indomethacin, suggesting that ANA is metabolized by a cyclooxygenase in this system. The data imply that ANA could play a role in the response of the immune system to cannabinoids and bacterial endotoxins and that AA mobilization is a predictor for increased ANA synthesis.</p></div>","PeriodicalId":100162,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1998-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0005-2760(98)00110-6","citationCount":"114","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005276098001106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 114

Abstract

The hypothesis that the capability of agents to mobilize arachidonic acid (AA) could predict increased anandamide (ANA) synthesis in a macrophage cell line has been examined. Lipopolysaccharide (LPS), platelet-activating factor (PAF) and cannabinoids such as Δ9-tetrahydrocannabinol (THC) and anandamide were all found to be agonists for the release of AA and led to increased ANA synthesis in RAW264.7 mouse macrophage cells. Nitric oxide, in contrast, stimulated AA release without raising ANA levels. ANA stimulation of its own synthesis indicates the existence of a positive feedback mechanism. The possible involvement of the CB2 receptor in THC-mediated AA release and ANA synthesis is addressed using the antagonist SR144528. ANA synthesis is also increased by the combination of calcium ionophore and indomethacin, suggesting that ANA is metabolized by a cyclooxygenase in this system. The data imply that ANA could play a role in the response of the immune system to cannabinoids and bacterial endotoxins and that AA mobilization is a predictor for increased ANA synthesis.

花生四烯酸动员激动剂在免疫系统细胞中诱导阿南达胺合成
药物动员花生四烯酸(AA)的能力可以预测巨噬细胞中anandamide (ANA)合成的增加。在RAW264.7小鼠巨噬细胞中,脂多糖(LPS)、血小板活化因子(PAF)和大麻素如Δ9-tetrahydrocannabinol (THC)、anandamide均为AA释放的激动剂,导致ANA合成增加。相比之下,一氧化氮刺激了AA的释放,但没有提高ANA的水平。ANA刺激自身合成表明存在正反馈机制。CB2受体可能参与thc介导的AA释放和ANA合成,使用拮抗剂SR144528。钙离子载体和吲哚美辛的结合也增加了ANA的合成,这表明ANA在该系统中是由环加氧酶代谢的。这些数据表明,ANA可能在免疫系统对大麻素和细菌内毒素的反应中发挥作用,并且AA动员是ANA合成增加的预测因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信