T Nomiyama, Y Doi, H Kudo, H Furukawa, K Hamasaki, S Fujimoto
{"title":"Immunocytochemistry of fibronectin and endothelin-1 in the cavernous body of postnatal rabbit penises.","authors":"T Nomiyama, Y Doi, H Kudo, H Furukawa, K Hamasaki, S Fujimoto","doi":"10.1159/000046465","DOIUrl":null,"url":null,"abstract":"<p><p>The differentiating cavernous body (CB) of postnatal rabbit penises was examined with a special reference to immunolocalizations for fibronectin (FN) and endothelin-1 (ET-1). At postnatal day 1, the CBs were embedded by an abundance of mesenchymal cells (MCs), and some of them were closely associated with endothelial cells of preexisting capillaries. Our electron micrographs indicated that such MCs are successively incorporated into the capillary endothelium as vasoformative cells. At this period, vascular sprouts of the helicine artery (HA), which were associated with the MCs, arose from the deep penile artery, and the transformation of such cells to endothelial and medial muscle ones was also indicated, and some MCs appeared to differentiate to epithelioid cells in the media. Immunoreactions for FN were preferentially localized in the rough endoplasmic reticulum (rER) and along the plasma membrane of such vasoformative MCs, and on the extracellular matrix components which connect these MCs with sprouts of both growing capillaries and HA. These findings suggest that FN, which is produced in the rER of the MCs, plays a crucial role in the mechanical linkage during the incorporation of vasoformative MCs into these penile vessels. Immunoreactions for ET-1 were preferentially localized on Weibel-Palade bodies in endothelial cells of the HA, implying the involvement of this peptide in the regulation of the local blood flow in this vessel.</p>","PeriodicalId":6885,"journal":{"name":"Acta anatomica","volume":"162 1","pages":"23-32"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000046465","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta anatomica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000046465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The differentiating cavernous body (CB) of postnatal rabbit penises was examined with a special reference to immunolocalizations for fibronectin (FN) and endothelin-1 (ET-1). At postnatal day 1, the CBs were embedded by an abundance of mesenchymal cells (MCs), and some of them were closely associated with endothelial cells of preexisting capillaries. Our electron micrographs indicated that such MCs are successively incorporated into the capillary endothelium as vasoformative cells. At this period, vascular sprouts of the helicine artery (HA), which were associated with the MCs, arose from the deep penile artery, and the transformation of such cells to endothelial and medial muscle ones was also indicated, and some MCs appeared to differentiate to epithelioid cells in the media. Immunoreactions for FN were preferentially localized in the rough endoplasmic reticulum (rER) and along the plasma membrane of such vasoformative MCs, and on the extracellular matrix components which connect these MCs with sprouts of both growing capillaries and HA. These findings suggest that FN, which is produced in the rER of the MCs, plays a crucial role in the mechanical linkage during the incorporation of vasoformative MCs into these penile vessels. Immunoreactions for ET-1 were preferentially localized on Weibel-Palade bodies in endothelial cells of the HA, implying the involvement of this peptide in the regulation of the local blood flow in this vessel.