Electrochemical application of cobalt nanoparticles-polypyrrole composite modified electrode for the determination of phoxim

IF 2.5 Q1 Chemistry
Molla Tefera , Merid Tessema , Shimelis Admassie , Meryck Ward , Lisebo Phelane , Emmanuel I. Iwuoha , Priscilla G.L. Baker
{"title":"Electrochemical application of cobalt nanoparticles-polypyrrole composite modified electrode for the determination of phoxim","authors":"Molla Tefera ,&nbsp;Merid Tessema ,&nbsp;Shimelis Admassie ,&nbsp;Meryck Ward ,&nbsp;Lisebo Phelane ,&nbsp;Emmanuel I. Iwuoha ,&nbsp;Priscilla G.L. Baker","doi":"10.1016/j.acax.2021.100077","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, cobalt nanoparticles (CoNPs) were synthesized and cobalt nanoparticles modified glassy carbon electrode (CoNPs/GCE) was prepared by drop coating the nanoparticles on glassy carbon electrode. After preparing polypyrrole modified glassy carbon electrode (PPy/GCE) using electropolymerization of pyrrole in LiClO<sub>4</sub> solution, cobalt nanoparticles-polypyrrole composite modified glassy carbon electrode (CoNPs/PPy/GCE) was fabricated by drop coating the CoNPs on the PPy/GCE. Different characterization techniques such as scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, FTIR spectroscopy, electrochemical impedance spectroscopy and cyclic voltammetry were used to study the morphological structure and electrochemical behavior of the sensors. The results demonstrated that PPy chains interacted with CoNPs through donor-acceptor bonds. Among all the electrodes, CoNPs/PPy/GCE exhibited highest electroactive surface area and lowest electron transfer resistance towards phoxim. Under the optimal conditions, the sensor showed linear relationship between the reduction peak current and the concentration of phoxim in the range of 0.025 μM–12 μM with the detection limit as 4.5 nM. Besides, the composite electrode demonstrated excellent reproducibility, good stability and selectivity towards the possible interfering substances. All of these properties made CoNPs/PPy/GCE a suitable electrochemical sensor for the electrochemical determination of phoxim in water samples using square wave voltammetry.</p></div>","PeriodicalId":241,"journal":{"name":"Analytica Chimica Acta: X","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8482437/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590134621000098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 3

Abstract

In this study, cobalt nanoparticles (CoNPs) were synthesized and cobalt nanoparticles modified glassy carbon electrode (CoNPs/GCE) was prepared by drop coating the nanoparticles on glassy carbon electrode. After preparing polypyrrole modified glassy carbon electrode (PPy/GCE) using electropolymerization of pyrrole in LiClO4 solution, cobalt nanoparticles-polypyrrole composite modified glassy carbon electrode (CoNPs/PPy/GCE) was fabricated by drop coating the CoNPs on the PPy/GCE. Different characterization techniques such as scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, FTIR spectroscopy, electrochemical impedance spectroscopy and cyclic voltammetry were used to study the morphological structure and electrochemical behavior of the sensors. The results demonstrated that PPy chains interacted with CoNPs through donor-acceptor bonds. Among all the electrodes, CoNPs/PPy/GCE exhibited highest electroactive surface area and lowest electron transfer resistance towards phoxim. Under the optimal conditions, the sensor showed linear relationship between the reduction peak current and the concentration of phoxim in the range of 0.025 μM–12 μM with the detection limit as 4.5 nM. Besides, the composite electrode demonstrated excellent reproducibility, good stability and selectivity towards the possible interfering substances. All of these properties made CoNPs/PPy/GCE a suitable electrochemical sensor for the electrochemical determination of phoxim in water samples using square wave voltammetry.

Abstract Image

纳米钴颗粒-聚吡咯复合修饰电极测定硫辛的电化学应用
本研究合成了钴纳米粒子(CoNPs),并通过滴涂法制备了钴纳米粒子修饰的玻碳电极(CoNPs/GCE)。采用吡咯在LiClO4溶液中电聚合的方法制备聚吡咯修饰玻碳电极(PPy/GCE)后,通过滴涂法制备了纳米钴-聚吡咯复合修饰玻碳电极(CoNPs/PPy/GCE)。利用扫描电镜、透射电镜、能量色散光谱、FTIR光谱、电化学阻抗谱和循环伏安法等表征技术对传感器的形态结构和电化学行为进行了研究。结果表明,PPy链通过供体-受体键与CoNPs相互作用。在所有电极中,CoNPs/PPy/GCE对辛硫磷的电活性表面积最大,电子转移电阻最低。在最优条件下,还原峰电流与硫辛肟浓度在0.025 μM - 12 μM范围内呈线性关系,检测限为4.5 nM。此外,复合电极具有良好的重现性、稳定性和对可能干扰物质的选择性。所有这些特性使CoNPs/PPy/GCE成为方波伏安法测定水样中硫辛的合适电化学传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytica Chimica Acta: X
Analytica Chimica Acta: X Chemistry-Analytical Chemistry
自引率
0.00%
发文量
3
审稿时长
16 weeks
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信