{"title":"Collagen hydroxylases and the protein disulfide isomerase subunit of prolyl 4-hydroxylases.","authors":"K I Kivirikko, T Pihlajaniemi","doi":"10.1002/9780470123188.ch9","DOIUrl":null,"url":null,"abstract":"<p><p>Prolyl 4-hydroxylases catalyze the formation of 4-hydroxyproline in collagens and other proteins with an appropriate collagen-like stretch of amino acid residues. The enzyme requires Fe(II), 2-oxoglutarate, molecular oxygen, and ascorbate. This review concentrates on recent progress toward understanding the detailed mechanism of 4-hydroxylase action, including: (a) occurrence and function of the enzyme in animals; (b) general molecular properties; (c) intracellular sites of hydroxylation; (d) peptide substrates and mechanistic roles of the cosubstrates; (e) insights into the development of antifibrotic drugs; (f) studies of the enzyme's subunits and their catalytic function; and (g) mutations that lead to Ehlers-Danlos Syndrome. An account of the regulation of collagen hydroxylase activities is also provided.</p>","PeriodicalId":50865,"journal":{"name":"Advances in Enzymology and Related Subjects","volume":"72 ","pages":"325-98"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/9780470123188.ch9","citationCount":"304","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Enzymology and Related Subjects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9780470123188.ch9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 304
Abstract
Prolyl 4-hydroxylases catalyze the formation of 4-hydroxyproline in collagens and other proteins with an appropriate collagen-like stretch of amino acid residues. The enzyme requires Fe(II), 2-oxoglutarate, molecular oxygen, and ascorbate. This review concentrates on recent progress toward understanding the detailed mechanism of 4-hydroxylase action, including: (a) occurrence and function of the enzyme in animals; (b) general molecular properties; (c) intracellular sites of hydroxylation; (d) peptide substrates and mechanistic roles of the cosubstrates; (e) insights into the development of antifibrotic drugs; (f) studies of the enzyme's subunits and their catalytic function; and (g) mutations that lead to Ehlers-Danlos Syndrome. An account of the regulation of collagen hydroxylase activities is also provided.