31P-NMR determinations of cytosolic phosphodiesters in turtle hearts

Jeremy S. Wasser , Lorri Vogel , Susan S. Guthrie , Neal Stolowich , Mohan Chari
{"title":"31P-NMR determinations of cytosolic phosphodiesters in turtle hearts","authors":"Jeremy S. Wasser ,&nbsp;Lorri Vogel ,&nbsp;Susan S. Guthrie ,&nbsp;Neal Stolowich ,&nbsp;Mohan Chari","doi":"10.1016/S0300-9629(97)00046-7","DOIUrl":null,"url":null,"abstract":"<div><p>As part of our ongoing research on cardiac hypoxia tolerance we have conducted <sup>31</sup>P nuclear magnetic resonance (NMR) studies of isolated, perfused, working hearts from freshwater turtles, animals that are well known for their ability to tolerate prolonged periods of anoxia. A striking feature of turtle heart spectra is an extremely high concentration of NMR visible phosphodiesters (PDEs). Cardiac spectra from mammals, on the other hand, typically exhibit only a small resonance in the PDE region. Our aim in this study was to compare myocardial PDE profiles between the highly hypoxia tolerant western painted turtle (<em>Chrysemys picta bellii</em>) and the relatively hypoxia sensitive softshelled turtle (<em>Trionyx spinifer</em>) in order to begin to test the hypothesis that high constitutive levels of cytosolic PDEs may play a role in conferring hypoxia and ischemia tolerance on the myocardium. We also collected <sup>31</sup>P-NMR spectra of PCA extracts of tissue from these species and from Kemp's ridley sea turtles (<em>Lepidochelys kempi</em>), as well as spectra from isolated hearts and PCA extracts of redeared sliders (<em>Trachemys</em> [formerly <em>Pseudemys</em>] <em>scripta</em>]). Total NMR visible phosphodiesters make up 24 ± 8.6% of the total NMR visible phosphorus in <em>chrysemys</em> hearts, 20.7 ± 5.9% in <em>Trachemys</em> hearts, but only 12.2 ± 5.1% in <em>Trionyx</em> hearts (<em>P</em> &lt; 0.05). We have identified three distinct PDEs in turtle hearts: glycerophosphorylcholine (GPC); glycerophosphorylethanolamine (GPE); and serine ethanolamine phosphodiester (SEP). SEP is the dominant compound in <em>Chrysemys</em> and <em>Trachemys</em> (79.3 ± 10.2% and 84.7 ± 3.7% of total PDE, respectively), while GPC is most abundant in <em>Trionyx</em> (74.0 ± 4.3% of total PDE) and <em>Lepidochelys</em> (not quantitated). The function of this class of compounds is unclear but it has been suggested that cytosolic PDEs may function as lysophospholipase inhibitors, a role that would decrease the rate of membrane phospholipid turnover. Our comparative data suggest that cytosolic PDEs could play a role in phospholipid sparing during anoxic or ischemic stress in turtles but a direct test of this hypothesis awaits future experimentation.</p></div>","PeriodicalId":10612,"journal":{"name":"Comparative Biochemistry and Physiology Part A: Physiology","volume":"118 4","pages":"Pages 1193-1200"},"PeriodicalIF":0.0000,"publicationDate":"1997-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0300-9629(97)00046-7","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology Part A: Physiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300962997000467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

As part of our ongoing research on cardiac hypoxia tolerance we have conducted 31P nuclear magnetic resonance (NMR) studies of isolated, perfused, working hearts from freshwater turtles, animals that are well known for their ability to tolerate prolonged periods of anoxia. A striking feature of turtle heart spectra is an extremely high concentration of NMR visible phosphodiesters (PDEs). Cardiac spectra from mammals, on the other hand, typically exhibit only a small resonance in the PDE region. Our aim in this study was to compare myocardial PDE profiles between the highly hypoxia tolerant western painted turtle (Chrysemys picta bellii) and the relatively hypoxia sensitive softshelled turtle (Trionyx spinifer) in order to begin to test the hypothesis that high constitutive levels of cytosolic PDEs may play a role in conferring hypoxia and ischemia tolerance on the myocardium. We also collected 31P-NMR spectra of PCA extracts of tissue from these species and from Kemp's ridley sea turtles (Lepidochelys kempi), as well as spectra from isolated hearts and PCA extracts of redeared sliders (Trachemys [formerly Pseudemys] scripta]). Total NMR visible phosphodiesters make up 24 ± 8.6% of the total NMR visible phosphorus in chrysemys hearts, 20.7 ± 5.9% in Trachemys hearts, but only 12.2 ± 5.1% in Trionyx hearts (P < 0.05). We have identified three distinct PDEs in turtle hearts: glycerophosphorylcholine (GPC); glycerophosphorylethanolamine (GPE); and serine ethanolamine phosphodiester (SEP). SEP is the dominant compound in Chrysemys and Trachemys (79.3 ± 10.2% and 84.7 ± 3.7% of total PDE, respectively), while GPC is most abundant in Trionyx (74.0 ± 4.3% of total PDE) and Lepidochelys (not quantitated). The function of this class of compounds is unclear but it has been suggested that cytosolic PDEs may function as lysophospholipase inhibitors, a role that would decrease the rate of membrane phospholipid turnover. Our comparative data suggest that cytosolic PDEs could play a role in phospholipid sparing during anoxic or ischemic stress in turtles but a direct test of this hypothesis awaits future experimentation.

龟心胞质磷酸二酯的31P-NMR测定
作为我们正在进行的心脏缺氧耐受性研究的一部分,我们对淡水海龟的分离,灌注,工作心脏进行了31P核磁共振(NMR)研究,淡水海龟以其耐受长时间缺氧的能力而闻名。龟心光谱的一个显著特征是核磁共振可见磷酸二酯(PDEs)的浓度极高。另一方面,哺乳动物的心脏频谱在PDE区域通常只表现出很小的共振。我们在这项研究中的目的是比较高耐缺氧的西漆龟(Chrysemys picta bellii)和相对缺氧敏感的软壳龟(Trionyx spinifer)的心肌PDE谱,以开始验证高组成水平的细胞质PDE可能在心肌缺氧和缺血耐受中发挥作用的假设。我们还收集了这些物种和肯普雷氏海龟(Lepidochelys kempi)组织中PCA提取物的31P-NMR光谱,以及重红滑块(Trachemys[原pseudomyys] scripta])离体心脏和PCA提取物的光谱。总核磁共振可见磷酸二酯占金龟心脏核磁共振可见磷总量的24±8.6%,占赤羊心脏的20.7±5.9%,而Trionyx心脏仅占12.2±5.1% (P <0.05)。我们在海龟心脏中发现了三种不同的pde:甘油磷酸胆碱(GPC);glycerophosphorylethanolamine (GPE);丝氨酸乙醇胺磷酸二酯(SEP)。SEP在金蝇和雪蝇中含量最高(分别占总PDE的79.3±10.2%和84.7±3.7%),而GPC在金蝇和鳞蝇中含量最高(占总PDE的74.0±4.3%)。这类化合物的功能尚不清楚,但有研究表明,胞质PDEs可能具有溶血磷脂酶抑制剂的功能,这一作用可以降低膜磷脂的转化率。我们的比较数据表明,在缺氧或缺血应激时,胞质PDEs可能在海龟的磷脂保存中发挥作用,但对这一假设的直接检验有待于未来的实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信